scholarly journals Toward Marker-assisted Breeding for Root Architecture Traits in Southern Highbush Blueberry

2016 ◽  
Vol 141 (5) ◽  
pp. 414-424 ◽  
Author(s):  
Gerardo H. Nunez ◽  
Hilda Patricia Rodríguez-Armenta ◽  
Rebecca L. Darnell ◽  
James W. Olmstead

Root growth and root system architecture (RSA) are affected by edaphic and genetic factors and they can impact plant growth and farm profitability. Southern highbush blueberries [SHBs (Vaccinium corymbosum hybrids)] develop shallow, fibrous root systems, and exhibit a preference for acidic soils where water and ammonium are readily available. The amendments used to create these soil conditions negatively affect the profitability of SHB plantations. Hence, breeding for RSA traits has been suggested as an alternative to soil amendments. Vaccinium arboreum is a wild species that is used in SHB breeding. V. arboreum exhibits greater drought tolerance and broader soil pH adaptation than SHB, and—according to anecdotal evidence—it develops deep, taproot-like root systems. The present study constitutes the first in-depth study of the RSA of Vaccinium species with the intention of facilitating breeding for RSA traits. Root systems were studied in rhizotron-grown seedling families. In separate experiments, we tested the effect that growth substrate and family pedigree can have on root growth and RSA. Subsequently, a genotyping by sequence approach was used to develop single nucleotide polymorphism (SNP) markers that could be used along with the phenotyping method to investigate the heritability of RSA traits and look for marker-trait associations. We found that RSA is affected by growth substrate and family pedigree. In addition, we found that V. arboreum exhibited greater maximum root depth and a lower percentage of roots in the top 8 cm of soil than SHB, and interspecific hybrids generally exhibited intermediate phenotypes. Also, we found that RSA traits exhibit moderate to low heritability and genetic correlations among them. Finally, we found 59 marker-trait associations. Among these markers, 37 were found to be located in exons, and 16 of them were annotated based on protein homology with entries in National Center for Biotechnology Information (NCBI) GenBank. Altogether, the present study provides tools that can be used to breed for root architecture traits in SHB.

2010 ◽  
Vol 36 (4) ◽  
pp. 149-159
Author(s):  
Susan Day ◽  
P. Eric Wiseman ◽  
Sarah Dickinson ◽  
J. Roger Harris

Knowledge of the extent and distribution of tree root systems is essential for managing trees in the built environment. Despite recent advances in root detection tools, published research on tree root architecture in urban settings has been limited and only partially synthesized. Root growth patterns of urban trees may differ considerably from similar species in forested or agricultural environments. This paper reviews literature documenting tree root growth in urban settings as well as literature addressing root architecture in nonurban settings that may contribute to present understanding of tree roots in built environments. Although tree species may have the genetic potential for generating deep root systems (>2 m), rooting depth in urban situations is frequently restricted by impenetrable or inhospitable soil layers or by underground infrastructure. Lateral root extent is likewise subject to restriction by dense soils under hardscape or by absence of irrigation in dry areas. By combining results of numerous studies, the authors of this paper estimated the radius of an unrestricted root system initially increases at a rate of approximately 38 to 1, compared to trunk diameter; however, this ratio likely considerably declines as trees mature. Roots are often irregularly distributed around the tree and may be influenced by cardinal direction, terrain, tree lean, or obstacles in the built environment. Buttress roots, tap roots, and other root types are also discussed.


2021 ◽  
Author(s):  
Justin Miron

Understanding the architecture of tree roots is an important component of urban forestry management practice. Tree roots are structurally and functionally important to the survival of trees, and this can be even more so in urban environments where underground space for roots is limited. Tree root architecture models can provide a complementary approach to traditional on-site field investigation methods. Root architecture models are unique in that they can simulate the spatial arrangements of root system structure explicitly, and allow investigators to create hypothetical simulations to test their assumptions about what may be driving root growth. The use of root architecture models in the literature is extensive and may be applied in diverse streams of investigation, but their application to tree root systems is less common. This research demonstrates a root architecture model, Rootbox, as a case study in the application of plant architecture models to simulate tree root growth in urban conditions. Model parameterization was based on conformity of root simulations to tree root architecture reported in the literature. The model is deployed in four hypothetical urban soil scenarios, which are representative of planting sites commonly observed in urban settings. The analysis demonstrates that plausible tree root system architectures – specifically, commonly observed growth attributes - can be produced by Rootbox, but only after several adaptive changes to both the source code/model design are made. Custom soil models can integrate with the simulation to represent urban conditions by modifying both the growth direction and elongation of portions of the root architecture, and thus offer greater control over the output architecture. Rootbox offers a flexible method of simulating the architecture of tree root systems, but further research should focus on optimizing the model’s parameters and functions to enable greater user control over model output.


2021 ◽  
Author(s):  
Justin Miron

Understanding the architecture of tree roots is an important component of urban forestry management practice. Tree roots are structurally and functionally important to the survival of trees, and this can be even more so in urban environments where underground space for roots is limited. Tree root architecture models can provide a complementary approach to traditional on-site field investigation methods. Root architecture models are unique in that they can simulate the spatial arrangements of root system structure explicitly, and allow investigators to create hypothetical simulations to test their assumptions about what may be driving root growth. The use of root architecture models in the literature is extensive and may be applied in diverse streams of investigation, but their application to tree root systems is less common. This research demonstrates a root architecture model, Rootbox, as a case study in the application of plant architecture models to simulate tree root growth in urban conditions. Model parameterization was based on conformity of root simulations to tree root architecture reported in the literature. The model is deployed in four hypothetical urban soil scenarios, which are representative of planting sites commonly observed in urban settings. The analysis demonstrates that plausible tree root system architectures – specifically, commonly observed growth attributes - can be produced by Rootbox, but only after several adaptive changes to both the source code/model design are made. Custom soil models can integrate with the simulation to represent urban conditions by modifying both the growth direction and elongation of portions of the root architecture, and thus offer greater control over the output architecture. Rootbox offers a flexible method of simulating the architecture of tree root systems, but further research should focus on optimizing the model’s parameters and functions to enable greater user control over model output.


HortScience ◽  
2016 ◽  
Vol 51 (7) ◽  
pp. 880-886 ◽  
Author(s):  
Bruno Casamali ◽  
Rebecca L. Darnell ◽  
Alisson P. Kovaleski ◽  
James W. Olmstead ◽  
Jeffrey G. Williamson

Vaccinium arboreum Marsh is a wild species adapted to high pH (above 6.0) and low organic matter soils (below 2.0%). The use of V. arboreum rootstocks may be a viable option to increase soil adaptation of southern highbush blueberry (SHB) (Vaccinium corymbosum interspecific hybrid) under marginal soil conditions. The objective of this research was to evaluate the vegetative and reproductive traits of ‘Farthing’ and ‘Meadowlark’ SHB own-rooted or grafted onto V. arboreum and grown in pine bark–amended or nonamended soil. The study was conducted from 2012 through 2014 at a research center in Citra, FL, and a grower’s farm in Archer, FL. Vaccinium arboreum rootstock generally induced the same effects in both cultivars. Grafted plants in both soil treatments had reduced canopy growth in the first year after field planting compared with own-rooted plants in amended soil. However, canopy volume of grafted plants was greater than own-rooted plants in nonamended soil and similar to own-rooted plants in amended soil 2 years after field planting for ‘Meadowlark’ and 3 years after planting for ‘Farthing’. Fruit yield was lower in grafted plants compared with own-rooted plants in the first fruiting year (2 years after field planting). By the second fruiting year, yields of grafted plants were similar to or greater than yields of own-rooted plants when grown in nonamended soil, whereas in amended soil, yields of grafted plants were similar to yields of own-rooted plants. Grafted plants had greater mean berry weight, but lower berry firmness; however, the firmness values were still considered acceptable (greater than 160 g⋅mm−1). Internal fruit quality [total soluble solids (TSS) and total titratable acidity (TTA)] was not consistently affected by the rootstock or soil treatments. These results suggest that grafting SHB onto V. arboreum does not increase yield in the establishment years compared with own-rooted SHB when grown in amended soils, but may have the ability to increase yield with no negative effects on fruit quality when grown in nonamended soils.


2017 ◽  
Author(s):  
Andrea Schnepf ◽  
Daniel Leitner ◽  
Magdalena Landl ◽  
Guillaume Lobet ◽  
Trung Hieu Mai ◽  
...  

ABSTRACTBackground and AimsRoot architecture development determines the sites in soil where roots provide input of carbon and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that simulate the fate of water and solutes in the soil-root system. We present a root architectural model, CRootBox, as a flexible framework to model architecture and its interactions with static and dynamic soil environments.MethodsCRootBox is a C++ -based root architecture model with Python binding, so that CRootBox can be included via a shared library into any Python code. Output formats include VTP, DGF, RSML and CSV. We further created a database of published root architectural parameters. The capabilities of CRootBox for the unconfined growth of single root systems, as well as the different parameter sets, are highlighted into a freely available web application.Key resultsWe demonstrate the use of CRootBox for 5 different cases (1) free growth of individual root systems (2) growth of root systems in containers as a way to mimic experimental setups, (3), field scale simulation, (4) root growth as affected by heterogeneous, static soil conditions, and (5) coupling CRootBox with Soil Physics with Python code to dynamically compute water flow in soil, root water uptake, and water flow inside roots.ConclusionsIn conclusion, we present a fast and flexible functional-structural root model which is based on state-of-the-art computational science methods. Its aim is to facilitate modelling of root responses to environmental conditions as well as the impact of root on soil. In the future, we plan to extend this approach to the aboveground part of the plant.


1998 ◽  
Vol 8 (4) ◽  
pp. 544-549 ◽  
Author(s):  
Silvana Nicola

Root architecture can be very important in plant productivity. The importance of studies on root morphology and development is discussed to improve seedling growth. Root systems of dicotyledonous species are reviewed, with emphasis on differences between growth of basal and lateral roots. The presence of different types of roots in plant species suggests possible differences in function as well. The architecture of a root system related to its functions is considered. Classical methods for studying root systems comprise excavation of root system, direct observation, and indirect analyses. While the first method is destructive and the third is effective in understanding root architecture only on a relatively gross scale, observation methods allow the scientist a complete a nondestructive architectural study of a root system. The three groups are reviewed related to their potential to give valuable information related to the root architecture and development of the seedling, with emphasis on the availability of a medium-transparent plant-growing system, enabling nondestructive daily observations and plant measurements under controlled environmental conditions. Effects of CO2 enrichment on seedling growth is reviewed, emphasizing the effects of CO2 on root growth.


2015 ◽  
Vol 25 (4) ◽  
pp. 460-463 ◽  
Author(s):  
Rebecca L. Darnell ◽  
Bruno Casamali ◽  
Jeffrey G. Williamson

Successful blueberry (Vaccinium sp.) cultivation typically requires soils with low pH, high organic matter, readily available iron, and nitrogen (N) in the ammonium form. Growth of blueberry on typical mineral soils (higher pH, low organic matter) is reduced. Although soil pH effects on nutrient availability and uptake are known, it is unclear if the requirement for low soil pH in blueberry production is due to effects on nutrient availability/uptake or is a more direct effect of rhizosphere pH on root function. In addition, it is unclear if the requirement for high organic matter (soil amendments) is related directly to nutrient availability/uptake. Several studies have examined the use of rootstocks to increase soil adaptation of blueberry and some of these rootstocks have been found to increase plant vigor and yield. In particular, we have investigated whether sparkleberry (Vaccinium arboreum)—a wild blueberry species that is adapted to high pH and low organic matter soils—could be used as a rootstock for commercial production of blueberry on mineral soils. Our work indicates that both nitrate (NO3−) and iron (Fe) uptake and assimilation are greater in sparkleberry compared with southern highbush blueberry [SHB (Vaccinium corymbosum interspecific hybrid)]. This is correlated with increased activity of nitrate reductase (NR) and iron chelate reductase, the rate limiting enzymes for NO3− and Fe acquisition, respectively. Field studies comparing growth and yield of own-rooted vs. grafted ‘Meadowlark’ and ‘Farthing’ SHB in amended vs. nonamended soils are ongoing. In general, own-rooted plants on amended soils exhibit greater growth than own-rooted on nonamended soils, while grafted plants in either soil system exhibit intermediate growth. Yields generally followed this pattern. Our preliminary results suggest that tolerance of SHB to mineral soils is greater when plants are grafted onto sparkleberry than when grown on their own roots. However, growth and yield of grafted plants grown under mineral soil conditions may not equal or exceed that of own-rooted plants grown under optimum soil conditions, at least in the first years after field planting. Longer term studies are necessary to fully evaluate the potential of using sparkleberry and other blueberry species as rootstocks for SHB and northern highbush blueberry (V. corymbosum).


2009 ◽  
Vol 36 (11) ◽  
pp. 938 ◽  
Author(s):  
Nima Yazdanbakhsh ◽  
Joachim Fisahn

Plant organ phenotyping by non-invasive video imaging techniques provides a powerful tool to assess physiological traits and biomass production. We describe here a range of applications of a recently developed plant root monitoring platform (PlaRoM). PlaRoM consists of an imaging platform and a root extension profiling software application. This platform has been developed for multi parallel recordings of root growth phenotypes of up to 50 individual seedlings over several days, with high spatial and temporal resolution. PlaRoM can investigate root extension profiles of different genotypes in various growth conditions (e.g. light protocol, temperature, growth media). In particular, we present primary root growth kinetics that was collected over several days. Furthermore, addition of 0.01% sucrose to the growth medium provided sufficient carbohydrates to maintain reduced growth rates in extended nights. Further analysis of records obtained from the imaging platform revealed that lateral root development exhibits similar growth kinetics to the primary root, but that root hairs develop in a faster rate. The compatibility of PlaRoM with currently accessible software packages for studying root architecture will be discussed. We are aiming for a global application of our collected root images to analytical tools provided in remote locations.


1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.


Sign in / Sign up

Export Citation Format

Share Document