scholarly journals Regression models of adsorbing nickel (II) ions by carbon sorbents

Author(s):  
N. V. Irinchinova ◽  
V. I. Dudarev ◽  
E. G. Filatova ◽  
V. S. Aslamova

Abstract: The use of inexpensive materials such as sorbents increases the competitive advantages of removing heavy metal ions, including nickel (II) ions, from aqueous solutions and wastewater. Such materials include active carbons – carbon sorbents. The oxidized carbon sorbent AD-05-2 and its original analogue have been used as the object of this research. The oxidation of carbon sorbent AD-05-2 was conducted using a solution of nitric acid and urea following a conventional method. Oxidation resulted in improvement of the textural characteristics of the carbon sorbent. The total pore volume increased, including the volume of micropores, which had a positive effect on the sorption properties of the obtained sample. This article studies the adsorption of nickel (II) ions by the oxidized carbon sorbent AD-05-2 and its original analogue. For both models, the total time of establishing adsorptive equilibrium in the system adsorbate–adsorbent was 4 hours, pH = 9,6, and the range of temperatures – 298–338 K. The obtained experimental data on the nickel (II) ion adsorption are processed in the software package Statgraphics Plus. Adsorption isotherms are described using parabolic regression models, which cover 98.86–99.99% of the experimental data. The adsorption of nickel (II) ions increases with temperature, as indicated by a higher value of the first derivative dA/dCp, apparently, due to accelerated external diffusion. A significant steep rise of the isotherms corresponds to the temperature of 338 K, which indicates the diffusion effect on the adsorption process. The estimates of the accuracy of regression models are provided by the mean square σ and absolute Δ errors. Autocorrelation of experimental data is estimated using Durbin – Watson (DW) test. The obtained regression models can be applied for calculating the optimum parameters of nickel (II) ions’ adsorption from aqueous solutions and process stream using the oxidized carbonic sorbent AD-05-2 and its original analog.

Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106869
Author(s):  
Behzad Rahimi ◽  
Nayereh Rezaie-Rahimi ◽  
Negar Jafari ◽  
Ali Abdolahnejad ◽  
Afshin Ebrahimi

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nourmoradi ◽  
Mehdi Khiadani ◽  
M. Nikaeen

Multicomponent adsorption of benzene, toluene, ethylbenzene, and xylene (BTEX) was assessed in aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide (TTAB-Mt). Batch experiments were conducted to determine the influences of parameters including loading rates of surfactant, contact time, pH, adsorbate concentration, and temperature on the adsorption efficiency. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to determine the adsorbent properties. Results showed that the modification of the adsorbent via the surfactant causes structural changes of the adsorbent. It was found that the optimum adsorption condition achieves with the surfactant loading rate of 200% of the cation exchange capacity (CEC) of the adsorbent for a period of 24 h. The sorption of BTEX by TTAB-Mt was in the order ofB<T<E<X. The experimental data were fitted by many kinetic and isotherm models. The results also showed that the pseudo-second-order kinetic model and Freundlich isotherm model could, respectively, be fitted to the experimental data better than other available kinetic and isotherm models. The thermodynamic study indicated that the sorption of BTEX with TTAB-Mt was achieved spontaneously and the adsorption process was endothermic as well as physical in nature. The regeneration results of the adsorbent also showed that the adsorption capacity of adsorbent after one use was 51% to 70% of original TTAB-Mt.


2017 ◽  
Vol 76 (7) ◽  
pp. 1726-1738 ◽  
Author(s):  
Raluca Maria Hlihor ◽  
Mihaela Roşca ◽  
Teresa Tavares ◽  
Maria Gavrilescu

The aim of this paper was to establish the optimum parameters for the biosorption of Pb(II) by dead and living Arthrobacter viscosus biomass from aqueous solution. It was found that at an initial pH of 4 and 26 °C, the dead biomass was able to remove 97% of 100 mg/L Pb(II), while the living biomass removed 96% of 100 mg/L Pb(II) at an initial pH of 6 and 28 ± 2 °C. The results were modeled using various kinetic and isotherm models so as to find out the mechanism of Pb(II) removal by A. viscosus. The modeling results indicated that Pb(II) biosorption by A. viscosus was based on a chemical reaction and that sorption occurred at the functional groups on the surface of the biomass. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX) analyses confirmed these findings. The suitability of living biomass as biosorbent in the form of a biofilm immobilized on star-shaped polyethylene supports was also demonstrated. The results suggest that the use of dead and living A. viscosus for the removal of Pb(II) from aqueous solutions is an effective alternative, considering that up to now it has only been used in the form of biofilms supported on different zeolites.


2011 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Z.A. Mansurov ◽  
A.R. Kerimkulova ◽  
S.A. Ibragimova ◽  
E.Y. Gukenheimer

The article presents the results of physico-chemical studies on the development of nanostructured carbon materials from domestic raw materials. Were obtained and tested micro-mesoporous carbon sorbents for molecular-sieve chromatography of markers and investigated the applicability of carbon sorbents for the separation of protein-lipid complex, and plant bio-stimulator. Carbon sorbents have well-developed porous structure but their disadvantage is the weak mechanical<br />strength. Recently it was shown that some carbon nanostructures have enormous strength. Thus arose the need to give the nano structured elements to carbon sorbent. Creating carbon sorbents containing nanocarbon structure was the aim of our study, as these by sorbents will be very useful for large-scale purification of biomolecules.


2004 ◽  
Vol 4 (1) ◽  
pp. 64
Author(s):  
Z. A. Noor Fadzlina ◽  
T. T. Teng ◽  
M. Abdul Rahman

The densities of the binary aqueous solutions of sodium polyacrylate (NaPM) at 20°C, 25°C, and 300C up to 0.17 m and LiCI at 25°C and 300C up to 3.13 m were measured using a vibrating tube digital densitimeter. The measured experimental data were then fitted to the polynomial d = do + IA;m'. The densities of the ternary aqueous systems NaPM-NaCI, NaPM-LiCI, and NaPM-sucrose were also =1 measured from 20°C to 30°C. The isopycnotic equation, Imi / moi was used to predict the densities of the ternary aqueous systems mentioned. The results show that predicted and observed density values are in good agreement. The overall percentage error of density prediction for the system NaPM-NaCI-H20 is 0.067. For the system NaPM-LiCI-HP,the overall percentage error is 0.074; and, for the system NaPM-sucrose-H20, the overall percentage error is 0.065.


2020 ◽  
Vol 7 (2-2019) ◽  
pp. 143-159 ◽  
Author(s):  
Steve R. Entrich ◽  
Wolfgang Lauterbach

In Germany we observe a strong increase in the enrolment in shadow education (‘Nachhilfe’) over the last two decades. To explain this development we draw on social reproduction theories identifying two strategies: (1) families seek competitive advantages for their children to maintain or achieve an advantageous education level (status attainment strategy); and (2) families seek performance improvement for their low performing children in order to meet the high demands in the pursuit of the highest school diploma (compensatory strategy). To test our theoretical ideas, we estimate regression models using data from the 2012 German LifE study. We find that shadow education is primarily used by disadvantaged educational strata to deal with higher demands in school. We conclude that the increased investment in Nachhilfe is an unintended but not yet negative outcome of educational expansion and recent educational reforms in Germany.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Abdelali Borji ◽  
Fatima-Ezzahra Borji ◽  
Abdelaziz Jourani

Using the spectrophotometric method, as a new method, the influence of dextran on the sucrose solubility and metastable zone width has been studied. In agreement with the literature the experimental data show that the dextran has a negligible effect on the sucrose solubility. The results also show that this impurity decreases the sucrose metastable zone width. The study of the nucleation kinetics performed, using Nyvlt’s approach, shows that the dextran accelerates the nucleation and that the nuclei are formed in the solution by instantaneous nucleation. The presence of dextran in the system causes a decrease in the growth rate of sucrose. The growth process of sucrose is governed by a Birth and Spread mechanism. The kinetic parameters of sucrose growth in aqueous solutions without and with dextran were estimated.


Sign in / Sign up

Export Citation Format

Share Document