scholarly journals Effects of Heating Temperature and Load Weight on Rheological Properties of Waste Plastic Cup

2021 ◽  
Vol 17 (1) ◽  
pp. 39-49
Author(s):  
Halimatuddahliana Nasution ◽  
Winny Winny

Analysis of heating temperature and load weight to the rheological properties of waste plastic cups is very important to gain fundamental understanding of the structure, characteristics, and processability of the material. The samples were tested using melt flow indexer. The heating temperature investigated were 180°C, 190°C, 200°C, 210°C, 220°C and 230°C, and the weight load were 1,875 g, 2,160 g, 2,835 g, 3,035 g and 3,450 g. The results obtained showed that the rheological properties of products such as melt flow index, shear stress and shear rate increased and the viscosity decreased with the increasing of heating temperature and load weight. For higher heating temperatures, the melt flow index, shear stress and shear rate of waste plastic cup increased significantly with the increasing load weight whereas the viscosity of waste plastic cup did not decrease significantly with the increasing load weight.

2012 ◽  
Vol 487 ◽  
pp. 644-648
Author(s):  
Yuan Liu ◽  
Lin Wang ◽  
Qing Yan Xu ◽  
Pei Jie Lin ◽  
Zhi Hong Guo ◽  
...  

Melt-blown generated PBT nonwoven fabrics usually have small fibril diameter, high flexibility, well heat and oil resistance. Therefore, they would have promising application such as vehicle filtering media. The rheological behavior of PBT with High Melt Flow Index for Melt-blown is investigated in this paper. It is a direction of the technology design and fabrication parameters .The relation of apparent viscosity and shear rate is analyzed, as well as flow activation energy and Non-Newtonian indexes. The results suggest that PBT with High Melt Flow Index is Non-Newtonian fluid. Apparent viscosity and flow activation energy show gradually decrease with increasing shear rate, exhibiting typical shear-thinning behavior.


2005 ◽  
Vol 21 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Arup Choudhury ◽  
Mandira Mukherjee ◽  
Basudam Adhikari

The present investigation deals with the viability of the use of recycled milk pouch material, which is a 50:50 mixture of LDPE and LLDPE, and the scope for improvement of its properties by combining it with virgin LDPE-LLDPE (50/50). Melt flow index (MFI), rheological properties, thermal and mechanical properties of the pure materials and their formulated blends containing recycled milk pouches were studied. The properties of the recycled materials were not as satisfactory as those of the corresponding virgin materials. But a significant improvement in viscosity, crystallinity, tensile strength and elongation at break of the recycled LDPE-LLDPE material was achieved by blending it with the corresponding virgin LDPE-LLDPE blend.


2015 ◽  
Vol 9 (3) ◽  
pp. 2446-2452
Author(s):  
Tomasz Mariusz Majka ◽  
Marcin Majka ◽  
Muhammad Kamrul Hasan

This article reports the prediction of the theoretical flow curves of polyamide composites by using Vinogradov-Malkin model. Determination of the melt flow index of polymeric materials is the first step to study viscosity-shear rate relationship. The viscosity of the composites at different temperatures were calculated by using the Williams, Landel'a and Ferry (WLF) equation. Other important rheological characteristics were calculated by using appropriate equations. One point method is employed to correlate the changes in viscosity with temperatures. As expected, it is found that incorporation of nanoclay to polyamide 6 (PA6) significantly decreases the Melt Flow Rate of the composites and hence, increases density. Addition of stabilizer further increases density of the PA6/nanoclay composites. The simulations of viscosity curves for PA6 composites were carried out at measurement temperature, 240°C and in the range of 180°C - 350°C with shear rate of 10-1 – 103 1/s. It is found that addition of nanoclay and stabilizer to PA6 decreases viscosity of the composites in the order of PA6/OMMT > PA6 > PA6/I1098 > PA6/OMMT/I1098 > PA6/MMT/I1098 > PA6/MMT. At higher shear rates, viscosity decreases in the same sequence as low shear rates. At further higher shear rates (> 1000 1/s), filler particles are arranged in the flow direction thus exerting no significant effect on viscosity of composites both with and without the stabilizer. During injection moulding in the shear rate ranging from 101 – 104 1/s at 240°C temperature, it is evident that viscosity decreases drastically with increase in shear rate.


Author(s):  
A. A. Yurkin ◽  
I. D. Simonov-Emelyanov ◽  
P. V. Surikov ◽  
N. L. Shembel

The rheological properties of polyethylene with different molecular weight characteristics were studied. Difference of molecular weight characteristics was found on the basis of melt flow index, and slip effect in the molten polyethylene flow was studied. The presence of slip effect is found in case of flowing polyethylene with a higher molecular weight in contrast to polyethylene with lower molecular weight at different temperatures. Changes of the slip effect parameters upon mixing polyethylenes with very much different molecular weight characteristics were studied.


2014 ◽  
Vol 660 ◽  
pp. 244-248
Author(s):  
Mohd Suffian Misaran ◽  
Rossalam Sarbatly ◽  
Md Mizanur Rahman

In the present work, the rheological properties in terms of shear stress and viscosity of Kaolin/Polyether-Sulfone (PESf) of varying ratio were investigated by a rotating rheometer. The shear rate of Kaolin/PESf sample was measured at increasing interval shear rate. By assuming that the fluid behaves like a typical Non-newtonian polymeric liquid, the consistency index, K and flow index, n were able to be determined. Thus, the rheology behaviors of the kaolin/PESf suspension could be investigated at a wider range of shear rate. The shear stress was found to increase with increasing shear rate, with the rate of change quite apparent at low shear rate. At higher shear rate, the shear stress increases definitively with the increase of kaolin content. On the other hand, the viscosity decreased at a faster rate initially and slows down to monotonous rate as the shear rate increases. Evidently at increasing shear rate, the viscosity tends to become constant as the deviation become smaller which is also known as zero shear rate viscosity region.


Author(s):  
Gul’naz A. Sabirova ◽  
◽  
Ruslan R. Safin ◽  
Nour R. Galyavetdinov ◽  
Aigul R. Shaikhutdinova ◽  
...  

Composite materials based on wood filler are promising materials that are actively conquering the market. This is due to the advantages of using these materials in various fields: weather resistance and environmental compatibility, easy machining and possibility of recycling. Furthermore, it is sustainable use of wastes of timber sawing and furniture and woodworking industries, as well as low-grade wood. Wood powder is also known to be one of the components of consumables used in additive 3D printing technologies. Over the last decade, the commercial use of 3D printers has increased rapidly due to the fact that it allows creating prototype objects of complex shape based on a computer model. Experimental studies were carried out to determine the tensile strength and rheological properties of a composite made of polylactide 4043D, untreated wood powder brand 140 and wood powder thermally modified at 200 and 240 °C. The composite is intended for creation of three-dimensional objects by extrusion using a 3D printer. It was found that with an increase in the amount of filler in the composite, the tensile strength decreases. Also, samples with thermally modified filler show an increase in tensile strength in comparison with samples with untreated filler. Prototypes of 3D threads with different composition were obtained, during the study of which the melt flow index was examined. It was found that with increasing temperature of wood filler treatment the melt flow index increases. With a lower content of wood powder in the melt composition, there is a 2-fold increase in the melt flow index. The knowing of the rheological properties of the resulting compositions will allow achieving maximum performance and reduction of energy and production costs.


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jan Wieringa ◽  
Theo Blijdenstein ◽  
Kees van Malssen ◽  
Reinhard Kohlus

AbstractThe rheological characterization of concentrated suspensions is complicated by the heterogeneous nature of their flow. In this contribution, the shear viscosity and wall slip velocity are quantified for highly concentrated suspensions (solid volume fractions of 0.55–0.60, D4,3 ~ 5 µm). The shear viscosity was determined using a high-pressure capillary rheometer equipped with a 3D-printed die that has a grooved surface of the internal flow channel. The wall slip velocity was then calculated from the difference between the apparent shear rates through a rough and smooth die, at identical wall shear stress. The influence of liquid phase rheology on the wall slip velocity was investigated by using different thickeners, resulting in different degrees of shear rate dependency, i.e. the flow indices varied between 0.20 and 1.00. The wall slip velocity scaled with the flow index of the liquid phase at a solid volume fraction of 0.60 and showed increasingly large deviations with decreasing solid volume fraction. It is hypothesized that these deviations are related to shear-induced migration of solids and macromolecules due to the large shear stress and shear rate gradients.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Tuffaha Fathe Salem ◽  
Seha Tirkes ◽  
Alinda Oyku Akar ◽  
Umit Tayfun

AbstractChopped jute fiber (JF) surfaces were modified using alkaline, silane and eco-grade epoxy resin. Surface characteristics of jute fibers were confirmed by FTIR and EDX analyses. JF filled polyurethane elastomer (TPU) composites were prepared via extrusion process. The effect of surface modifications of JF on mechanical, thermo-mechanical, melt-flow, water uptake and morphological properties of TPU-based eco-composites were investigated by tensile and hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test, water absorption measurements and scanning electron microscopy (SEM) techniques, respectively. Mechanical test results showed that silane and epoxy treated JF additions led to increase in tensile strength, modulus and hardness of TPU. Glass transition temperature (Tg) of TPU rose up to higher values after JF inclusions regardless of treatment type. Si-JF filled TPU exhibited the lowest water absorption among composites. Surface treated JFs displayed homogeneous dispersion into TPU and their surface were covered by TPU according to SEM micro-photographs.


1983 ◽  
Vol 22 (1) ◽  
pp. 90-101 ◽  
Author(s):  
A. V. Shenoy ◽  
S. Chattopadhyay ◽  
V. M. Nadkarni
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document