scholarly journals Scoping Recreational Disturbance of Shorebirds to Inform the Agenda for Research and Management in Tropical Asia

2020 ◽  
Vol 31 (2) ◽  
pp. 51-78 ◽  
Author(s):  
Sumudu Marasinghe ◽  
◽  
Greg D. Simpson ◽  
David Newsome ◽  
Priyan Perera ◽  
...  
Author(s):  
Nguyễn Thị Hồng Thu ◽  
Đặng Minh Nhật ◽  
Nguyễn Hoàng Dung

Sugar palm (Arenga pinnata) is a feather palm native to tropical Asia. In Vietnam, it is named Búng Báng or Đoác and grown only on the highlands in the central or northern part of Vietnam. It is utilized for many purposes, especially for Ta Vat wine production - a characteristic and unique product of Co Tu ethnic minority. However, because of the natural fermentation used in the production, the product quality is inconsistent. The purpose of this study was to examine a new procedure of using palm sap for making Ta Vat wine. Some characteristics of the sap, which was collected at Nam Giang district, Quang Nam province are determined, proving the potential of the sap for making wine product. The quality of sap changes quickly at room temperature. At low temperature (4 - 60C), the changes in sap quality are apparently slower. Examining some factors affecting its quality during the wine fermentation process, we determined the best parameters for the fermentation process as follows: inoculum size of 3% with cell density of about 1x108 cells/ml, the addition of the extract from the bark of Ceylon ironwood (Mesua ferrea L.) 4%. Keywords: Arenga pinnata, sap, Ceylon ironwood bark, Mesua ferrea L., wine fermentation.


Taxon ◽  
2021 ◽  
Author(s):  
Xianhan Huang ◽  
Tao Deng ◽  
Shaotian Chen ◽  
Jacob B. Landis ◽  
Nan Lin ◽  
...  

Zootaxa ◽  
2020 ◽  
Vol 4766 (3) ◽  
pp. 472-484
Author(s):  
HANNAH E. SOM ◽  
L. LEE GRISMER ◽  
PERRY L. JR. WOOD ◽  
EVAN S. H. QUAH ◽  
RAFE M. BROWN ◽  
...  

Liopeltis is a genus of poorly known, infrequently sampled species of colubrid snakes in tropical Asia. We collected a specimen of Liopeltis from Pulau Tioman, Peninsular Malaysia, that superficially resembled L. philippina, a rare species that is endemic to the Palawan Pleistocene Aggregate Island Complex, western Philippines. We analyzed morphological and mitochondrial DNA sequence data from the Pulau Tioman specimen and found distinct differences to L. philippina and all other congeners. On the basis of these corroborated lines of evidence, the Pulau Tioman specimen is described as a new species, L. tiomanica sp. nov. The new species occurs in sympatry with L. tricolor on Pulau Tioman, and our description of L. tiomanica sp. nov. brings the number of endemic amphibians and reptiles on Pulau Tioman to 12. 


2002 ◽  
Vol 46 (1) ◽  
Author(s):  
Dietrich Schmidt-Vogt

AbstractManagement of secondary tropical forests: a new perspective for sustainable use of forests in Asia. The decline of primary forests in the tropics is leading to a reassessment of the role secondary forests might play within the context of tropical forest management. Recent research has shown that secondary forests in the tropics can be both rich in species and complex in terms of stand structure. There is, moreover, a growing recognition of the importance of secondary forests for traditional subsistence economies in the tropics and of their economic potential for land use systems in the future. Management of secondary forests in Asia as an alternative to the extraction of timber from primary forests but also as one among other options to intensify traditional land use systems has a potential for the future especially because of the existence of vast tracts of valuable secondary forest cover, and because of the store of traditional knowledge that can still be found in tropical Asia.


2010 ◽  
Vol 10 (5) ◽  
pp. 2335-2351 ◽  
Author(s):  
D. Chang ◽  
Y. Song

Abstract. Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000–31 February 2007). The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads and emission factors were assigned to each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions showed clear spatial and seasonal variations. The size of the L3JRC burned areas ranged from 36 031 km2 in fire year 2005 to 52 303 km2 in 2001, and the MCD45A1 burned areas ranged from 54 790 km2 in fire year 2001 to 148 967 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas using ground-based measurements and other satellite data were made in several major burning regions, and the results suggest that MCD45A1 generally performed better than L3JRC, although with a certain degree of underestimation in forest areas. The average annual L3JRC-based emissions were 123 (102–152), 12 (9–15), 1.0 (0.7–1.3), 1.9 (1.4–2.6), 0.11 (0.09–0.12), 0.89 (0.63–1.21), 0.043 (0.036–0.053), 0.021 (0.021–0.023), 0.41 (0.34–0.52), 3.4 (2.6–4.3), and 3.6 (2.8–4.7) Tg yr−1 for CO2, CO, CH4, NMHCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10, respectively, whereas MCD45A1-based emissions were 122 (108–144), 9.3 (7.7–11.7), 0.63 (0.46–0.86), 1.1 (0.8–1.6), 0.11 (0.10–0.13), 0.54 (0.38–0.76), 0.043 (0.038–0.051), 0.033 (0.032–0.037), 0.39 (0.34–0.47), 3.0 (2.6–3.7), and 3.3 (2.8–4.0) Tg yr−1. Forest burning was identified as the major source of the fire emissions due to its high carbon density. Although agricultural burning was the second highest contributor, it is possible that some crop residue combustion was missed by satellite observations. This possibility is supported by comparisons with previously published data, and this result may be due to the small size of the field crop residue burning. Fire emissions were mainly concentrated in Indonesia, India, Myanmar, and Cambodia. Furthermore, the peak in the size of the burned area was generally found in the early fire season, whereas the maximum fire emissions often occurred in the late fire season.


2014 ◽  
Vol 14 (11) ◽  
pp. 5807-5824 ◽  
Author(s):  
H. F. Zhang ◽  
B. Z. Chen ◽  
I. T. van der Laan-Luijk ◽  
T. Machida ◽  
H. Matsueda ◽  
...  

Abstract. Current estimates of the terrestrial carbon fluxes in Asia show large uncertainties particularly in the boreal and mid-latitudes and in China. In this paper, we present an updated carbon flux estimate for Asia ("Asia" refers to lands as far west as the Urals and is divided into boreal Eurasia, temperate Eurasia and tropical Asia based on TransCom regions) by introducing aircraft CO2 measurements from the CONTRAIL (Comprehensive Observation Network for Trace gases by Airline) program into an inversion modeling system based on the CarbonTracker framework. We estimated the averaged annual total Asian terrestrial land CO2 sink was about −1.56 Pg C yr−1 over the period 2006–2010, which offsets about one-third of the fossil fuel emission from Asia (+4.15 Pg C yr−1). The uncertainty of the terrestrial uptake estimate was derived from a set of sensitivity tests and ranged from −1.07 to −1.80 Pg C yr−1, comparable to the formal Gaussian error of ±1.18 Pg C yr−1 (1-sigma). The largest sink was found in forests, predominantly in coniferous forests (−0.64 ± 0.70 Pg C yr−1) and mixed forests (−0.14 ± 0.27 Pg C yr−1); and the second and third large carbon sinks were found in grass/shrub lands and croplands, accounting for −0.44 ± 0.48 Pg C yr−1 and −0.20 ± 0.48 Pg C yr−1, respectively. The carbon fluxes per ecosystem type have large a priori Gaussian uncertainties, and the reduction of uncertainty based on assimilation of sparse observations over Asia is modest (8.7–25.5%) for most individual ecosystems. The ecosystem flux adjustments follow the detailed a priori spatial patterns by design, which further increases the reliance on the a priori biosphere exchange model. The peak-to-peak amplitude of inter-annual variability (IAV) was 0.57 Pg C yr−1 ranging from −1.71 Pg C yr−1 to −2.28 Pg C yr−1. The IAV analysis reveals that the Asian CO2 sink was sensitive to climate variations, with the lowest uptake in 2010 concurrent with a summer flood and autumn drought and the largest CO2 sink in 2009 owing to favorable temperature and plentiful precipitation conditions. We also found the inclusion of the CONTRAIL data in the inversion modeling system reduced the uncertainty by 11% over the whole Asian region, with a large reduction in the southeast of boreal Eurasia, southeast of temperate Eurasia and most tropical Asian areas.


2003 ◽  
Vol 79 (2) ◽  
pp. 263-267 ◽  
Author(s):  
Mark S Ashton

Dipterocarp forests of the Asian wet tropics have a long history of silvicultural research. This paper provides a review of this history and a summary of the ecological principles guiding the regeneration methods used. Dipterocarp forests are here defined as those of the seasonally wet regions of Thailand, Burma, and India, and those that are considered of the mixed dipterocarp forest type that dominate the aseasonal wet regions of Sri Lanka, Malaysia, and parts of Indonesia and the Philippines. Two silvicultural regeneration methods are described, shelterwoods and their variants, and selection systems. Both systems can be justified but emphasis is given to the development of shelterwood and selection regeneration methods that are tailored to the particular biological and social context at hand. The paper concludes with a call for improved land-use planning and stand typing to better integrate service and protection values with those values focused on commodity production. Key words: Dipterocarpus, hill forest, non-timber forest products, polycyclic, regeneration, selection, shelterwood, Shorea


ENTRAMADO ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 298-310
Author(s):  
Sonia Esperanza Aguirre-Forero ◽  
Nelson  Virgilio Piraneque-Gambasica ◽  
José Rafael Vásquez-Polo

Cocoa (Theobroma cacao L.) is a species originating from the humid tropics. Over 70,000 km2 worldwide is dedicated to growing cocoa, and approximately 30% of its global production is concentrated in the equatorial regions of Central and South America, the Antilles and tropical Asia. The demand for cocoa is growing significantly, but the presence of cadmium (Cd) in the species is a potential problem limiting its commercialization. The present study determined the Cd, Ni, Pb and Cr content in two cocoa-producing regions in northern Colombia. Foliage (leaf, bean and shell) and soil were analyzed. The mean Ni, Pb and Cr content in the plant tissue did not exceed the maximum permissible limits set by the United States Environmental Protection Agency (EPA). The mean Cd content in the beans was 0.51 mg kg-1 in region 1 and 0.66 mg kg-1 in region 2, which are considered risky per reports from the European Union and restrict the product’s export. These results serve as a reference for future research on cocoa.  


2021 ◽  
Vol 675 ◽  
pp. 1-21
Author(s):  
MA Ito ◽  
HJ Lin ◽  
MI O’Connor ◽  
M Nakaoka

Large-scale analysis along latitude or temperature gradients can be an effective method for exploring the potential roles of light and temperature in controlling seagrass phenology. In this study, we investigated effects of latitude and temperature on seagrass biomass and reproductive seasonality. Zostera japonica is an intertidal seagrass with a wide latitudinal distribution expanding from tropical to temperate zones in its native range in Asia, with an additional non-native distribution in North America. We collated available data on phenological traits (timings of peak biomass or reproduction, durations of biomass growth and reproductive season, and maximum biomass or reproductive ratio) from publications and our own observations. Traits were compared among geographic groups: Asia-tropical, Asia-temperate, and North America-temperate. We further examined relationships between traits and latitude and temperature for 3 population groups: Asian, North American, and all populations. Our analysis revealed significant variation among geographic groups in maximum biomass, peak reproductive timing, and maximum reproductive ratio, but not in other traits. Maximum biomass and peak reproductive timing for Asian and all populations were significantly correlated with latitude and temperature. Maximum biomass was highest at mid-latitudes or intermediate temperatures and decreased toward distribution range limits, and peak reproductive timing occurred later in the year at higher latitudes or cooler sites. North American populations showed shorter growth durations and greater reproductive ratios at higher latitude. Different responses observed for North American populations may reflect effects of introduction. Our study demonstrates potential variation among geographic regions and between native and non-native populations.


Sign in / Sign up

Export Citation Format

Share Document