Row Spacing, Plant Density, and Hybrid Effects on Corn Grain Yield and Moisture

2001 ◽  
Vol 93 (5) ◽  
pp. 1049-1053 ◽  
Author(s):  
Dale E. Farnham
Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 277 ◽  
Author(s):  
Héctor García-Martínez ◽  
Héctor Flores-Magdaleno ◽  
Roberto Ascencio-Hernández ◽  
Abdul Khalil-Gardezi ◽  
Leonardo Tijerina-Chávez ◽  
...  

Corn yields vary spatially and temporally in the plots as a result of weather, altitude, variety, plant density, available water, nutrients, and planting date; these are the main factors that influence crop yield. In this study, different multispectral and red-green-blue (RGB) vegetation indices were analyzed, as well as the digitally estimated canopy cover and plant density, in order to estimate corn grain yield using a neural network model. The relative importance of the predictor variables was also analyzed. An experiment was established with five levels of nitrogen fertilization (140, 200, 260, 320, and 380 kg/ha) and four replicates, in a completely randomized block design, resulting in 20 experimental polygons. Crop information was captured using two sensors (Parrot Sequoia_4.9, and DJI FC6310_8.8) mounted on an unmanned aerial vehicle (UAV) for two flight dates at 47 and 79 days after sowing (DAS). The correlation coefficient between the plant density, obtained through the digital count of corn plants, and the corn grain yield was 0.94; this variable was the one with the highest relative importance in the yield estimation according to Garson’s algorithm. The canopy cover, digitally estimated, showed a correlation coefficient of 0.77 with respect to the corn grain yield, while the relative importance of this variable in the yield estimation was 0.080 and 0.093 for 47 and 79 DAS, respectively. The wide dynamic range vegetation index (WDRVI), plant density, and canopy cover showed the highest correlation coefficient and the smallest errors (R = 0.99, mean absolute error (MAE) = 0.028 t ha−1, root mean square error (RMSE) = 0.125 t ha−1) in the corn grain yield estimation at 47 DAS, with the WDRVI index and the density being the variables with the highest relative importance for this crop development date. For the 79 DAS flight, the combination of the normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), WDRVI, excess green (EXG), triangular greenness index (TGI), and visible atmospherically resistant index (VARI), as well as plant density and canopy cover, generated the highest correlation coefficient and the smallest errors (R = 0.97, MAE = 0.249 t ha−1, RMSE = 0.425 t ha−1) in the corn grain yield estimation, where the density and the NDVI were the variables with the highest relative importance, with values of 0.295 and 0.184, respectively. However, the WDRVI, plant density, and canopy cover estimated the corn grain yield with acceptable precision (R = 0.96, MAE = 0.209 t ha−1, RMSE = 0.449 t ha−1). The generated neural network models provided a high correlation coefficient between the estimated and the observed corn grain yield, and also showed acceptable errors in the yield estimation. The spectral information registered through remote sensors mounted on unmanned aerial vehicles and its processing in vegetation indices, canopy cover, and plant density allowed the characterization and estimation of corn grain yield. Such information is very useful for decision-making and agricultural activities planning.


2006 ◽  
Vol 24 (2) ◽  
pp. 287-293 ◽  
Author(s):  
H.A. Acciares ◽  
M.S. Zuluaga

The use of narrow plant spacing in corn (Zea mays) has been suggested as a technological alternative to obtain grain yield increases, due to a better use of resources. The regular pattern could diminish intraspecific competition while favoring interspecific competition with weeds. The objective of this study was to analyze the effect of corn row spacing on weed aboveground biomass and corn grain yield. Field experiments were conducted during 2002/2003 and 2003/2004 growing seasons. Three corn hybrids with two-row width (0.70 and 0.35 m) were tested. A greater photosynthetic photon flux density (PPFD) interception with a lower weed aboveground dry matter in narrow row arrangement was obtained. Corn grain yield was greater in the narrow row arrangement than in the wide row spacing. This increase in grain yield was related to a better resource use that allows for a reduced interspecific competition. The use of reduced spatial arrangement appeared to be an interesting alternative to increase both the grain yield potential and corn suppressive ability against weeds in corn dryland production systems.


2021 ◽  
Vol 51 ◽  
Author(s):  
André Luis Vian ◽  
Christian Bredemeier ◽  
Maicon Andreo Drum ◽  
João Leonardo Fernandes Pires ◽  
Elizandro Fochesatto

ABSTRACT The estimated corn grain yield is dependent on plant density and should be monitored from the beginning of its development, especially between the phenological stages V3 and V10, since these stages are more responsive to management strategies. This study aimed to evaluate the efficiency of two methods [normalized difference vegetation index (NDVI) and plant occupation index (POI)] to estimate the density of corn plants, in order to identify the plant population in different phenological stages and corn grain yield. Two field experiments were conducted in two crop seasons and treatments consisted of four plant densities (4, 6, 8 and 10 plants m-2). The NDVI measurements of the vegetative canopy were performed in the growth stages V4, V5, V6, V7, V8 and V9 (2014) and V3, V5, V6, V8, V9, V10 and V13 (2015/2016). For the POI, the measurements were performed in the stages V5, V6, V8 and V9, in both crop seasons. The different plant densities were efficient in generating variability in the NDVI and POI values throughout the corn crop development cycle, and both tools were efficient in identifying density variations. It was observed that these tools should be used between the V4 and V9 growth stages.


Crop Science ◽  
2004 ◽  
Vol 44 (3) ◽  
pp. 847 ◽  
Author(s):  
Weidong Liu ◽  
Matthijs Tollenaar ◽  
Greg Stewart ◽  
William Deen

2021 ◽  
Vol 208 ◽  
pp. 104880
Author(s):  
Sami Khanal ◽  
Andrew Klopfenstein ◽  
Kushal KC ◽  
Venkatesh Ramarao ◽  
John Fulton ◽  
...  

1985 ◽  
Vol 65 (3) ◽  
pp. 481-485 ◽  
Author(s):  
G. J. HOEKSTRA ◽  
L. W. KANNENBERG ◽  
B. R. CHRISTIE

The objective of this study was to determine the effects on grain yield of growing cultivars in mixtures of different proportions. Two maize (Zea mays L.) hybrids, Pride 116 and United 106, were grown for 2 yr in pure stand and in seven mixtures of different proportions (7:1, 6:2, 5:3, 4:4, 3:5, 2:6, 1:7) at plant densities of 61 500, 99 400, and 136 000 plants per hectare. The total number of mixture combinations was 42, i.e. 2 years × three densities × seven proportions. All but one mixture yielded as expected based on the yield of component hybrids in pure stand. The higher yielding hybrid (United 106) yielded significantly less grain per plant in mixtures than in pure stand. The lower yielding hybrid (Pride 116) yielded more in mixtures than in pure stand, although the difference was not significant. These data support previous observations that the ability of a hybrid to yield in pure stands is not necessarily related to its ability to yield in mixtures. High plant densities appear to enhance the likelihood of interactions occurring among hybrids. For United 106, the number of proportions yielding less grain per plant than in pure stand was highly significant at the two higher plant densities. For Pride 116, the number of proportions yielding more than in pure stand was highly significant at the highest plant density.Key words: Corn, grain yield, mixtures of different proportions, high plant densities, Zea mays


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Alexandra M. Knight ◽  
Wesley J. Everman ◽  
David L. Jordan ◽  
Ronnie W. Heiniger ◽  
T. Jot Smyth

Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.


Sign in / Sign up

Export Citation Format

Share Document