Influence of Soil Animals and Metals on Decomposition Processes: A Microcosm Experiment

1988 ◽  
Vol 17 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Goran Bengtsson ◽  
Maria Berden ◽  
Sten Rundgren
2017 ◽  
Vol 68 (6) ◽  
pp. 1352-1356 ◽  
Author(s):  
Beatrice Gabriela Ioan ◽  
Cristiana Manea ◽  
Bianca Hanganu ◽  
Laura Statescu ◽  
Laura Gheuca Solovastru ◽  
...  

Human body is a complex of organic substances (proteins, lipids, carbohydrates), which undergo chemical decomposition processes soon after death. The compounds released during decomposition characterize the development of different stages of this process: e.g. biogenic amines resulted from the proteins decomposition will confer the particular smell of a cadaver, gases resulted from carbohydrates fermentation will give the bloating aspect of the cadaver. The study of cadaver decomposition and the products resulted from this process is the subject of human taphonomy and is realized nowadays in special facilities in USA and Australia. Identification and analysis of the chemical compounds emerged after human decomposition (gases, liquids, salts) give valuable information to forensic pathologists for estimating the postmortem interval (PMI). More, volatile compounds � which give the odor signature�specific to human remains � may be utilized in identifying clandestine burials, human remains or victims entrapped under ruins in cases of natural disasters. In this paper the authors describe the chemical decomposition stages of human cadavers, the factors influencing these processes and utility for the forensic activity of the results of human taphonomic studies.


2021 ◽  
Author(s):  
S. Maryam Sajjadi ◽  
Zeinab Asadollah-pour ◽  
S. Hashem Sajjadi ◽  
S. Nasrin Nabavi ◽  
Zahra Abed ◽  
...  

In this study, photocatalytic degradations of 2-nitrophenol and 4-nitrophenol were carried out efficiently using ZnO nanoparticles photo-catalyst under simulated solar irradiation. The photo-decomposition processes were optimized simultaneously by employing central...


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4409
Author(s):  
J. Landon Tyler ◽  
Robert L. Sacci ◽  
Jagjit Nanda

Electrolyte stability can be improved by incorporating complexing agents that bind key decomposition intermediates and slow down decomposition. We show that hexamethyl-phosphoramide (HMPA) extends both the thermal stability threshold of sodium hexafluorophosphate (NaPF6) in dimethoxyethane (DME) electrolyte and the cycle life of double-layer capacitors. HMPA forms a stable complex with PF5, an intermediate in PF6 anion thermal degradation. Unbound, this intermediate leads to autocatalytic degradation of the electrolyte solution. The results of electrochemical impedance spectroscopy (EIS) and galvanostatic cycling measurements show large changes in the cell without the presence of HMPA at higher temperatures (≥60 °C). Fourier transform infrared spectroscopy (FTIR) on the liquid and gas phase of the electrolyte shows without HMPA the formation of measurable amounts of PF5 and HF. The complimentary results of these measurements proved the usefulness of using Lewis bases such as HMPA to inhibit the degradation of the electrolyte solution at elevated temperatures and potentially lead to improve cycle life of a nonaqueous capacitor. The results showed a large increase in capacitance retention during cycling (72% retention after 750,000 cycles). The results also provide evidence of major decomposition processes (0% capacitance retention after 100,000 cycles) that take place at higher temperatures without the additive of a thermal stability additive such as HMPA.


2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Emmi Välimäki ◽  
Lasse Yli-Varo ◽  
Henrik Romar ◽  
Ulla Lassi

The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review, methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes, known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane, respectively, appear to have the greatest potential for hydrogen production. In particular, the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1116
Author(s):  
Elena Baldi ◽  
Paola Gioacchini ◽  
Daniela Montecchio ◽  
Stefano Mocali ◽  
Livio Antonielli ◽  
...  

The aim of the present experiment was to determine if the supply of biofertilizers could differently stimulate the native microbiota, thus determining different patterns of organic material decomposition processes. The microbial composition of soil and litter was investigated by next generation sequencing using a metabarcoding approach. The chemical structure of the decomposing litterbags was investigated through the TG-DTA analysis and NIR spectroscopy. The study was conducted in an apricot orchard in Italy, and two different type of biofertilizers (AMF and Trichoderma spp.) were compared to unfertilized control over one year. Bacteria and fungi in soil, 162 days from litter deposition, evidenced differentiated clusters for control and both biofertilizers; on the other hand, only fungal composition of litterbags was modified as a consequence of Trichoderma spp. supply; no effect was observed in the bacterial community of litterbags. NIR and TG-DTA analysis evidenced a significant change over time of the chemical composition of litterbags with a faster degradation as a consequence of Trichoderma spp. supply testified by a higher degradation coefficient (1.9) than control (1.6) and AMF (1.7). The supply of biofertilizers partially modified the bacteria community of soil, while Trichoderma spp. Influenced the fungal community of the litter. Moreover, Trichoderma spp. Evidenced a faster and higher degradation of litter than AMF-biofertilizers, laying the foundation for an efficient use in orchard.


Sign in / Sign up

Export Citation Format

Share Document