Influence of regrowth time on the forage quality of prairie grass, perennial ryegrass and tall fescue under non-limiting soil nutrient and moisture conditions

2006 ◽  
Vol 46 (1) ◽  
pp. 45 ◽  
Author(s):  
K. Sinclair ◽  
W. J. Fulkerson ◽  
S. G. Morris

The influence of regrowth time on the forage quality of prairie grass (Bromus willdenowii Kunth. cv. Matua), perennial ryegrass (Lolium perenne L. cv. Dobson) and tall fescue (Festuca arundinacea Schreb. cv. Dovey) was determined under non-limiting soil nutrient and moisture growth conditions. In a glasshouse, individual plants of each species were arranged in separate mini-swards and were defoliated at 6, 10 and 14 weeks after sowing to a stubble height of 60 mm for perennial ryegrass and tall fescue and 90 mm for prairie grass. Following defoliation at 14 weeks, selected individual plants were cut to the previous stubble height as each new leaf per tiller was fully expanded, to provide leaf material for nutrient analysis, until prairie grass, perennial ryegrass and tall fescue had attained 6–8, 5 and 3 leaves/tiller, respectively. The concentration of leaf phosphorus (P) decreased from 6.6 to 5.9 g/kg dry matter (DM) in prairie grass, increased from 5.9 to 6.9 g/kg DM in perennial ryegrass, and initially increased to 8.8 g/kg DM and then decreased to 8.4 g/kg DM in tall fescue. The mean potassium (K) content in perennial ryegrass was 29.6 g/kg DM and was not significantly affected by duration of regrowth, whereas K content in prairie grass and tall fescue fell from 51.7 to 43.6 g/kg DM and from 55.5 to 47.9 g/kg DM, respectively, after the first leaf per tiller formed. Calcium levels increased with regrowth in all species and at the completion of regrowth were 5.8, 3.8 and 3.4 g/kg DM in prairie grass, perennial ryegrass and tall fescue, respectively. The magnesium (Mg) and sodium (Na) content of perennial ryegrass showed no change throughout the regrowth period and had measured values of 2.5 and 2.8 g/kg DM, respectively. For tall fescue, the concentration of leaf Mg decreased from 0.30 to 0.24 g/kg DM, whereas the Na concentration increased from 1.2 to 2.1 g/kg DM. The Mg content of prairie grass remained constant at 2.0 g/kg DM, whereas the Na content increased from 2.7 to 4.3 (g/kg DM). While the crude protein content of all grasses declined over the regrowth period, values remained over 200 g/kg DM, well above the recommended content for lactating cows. The leaf water-soluble carbohydrate (WSC) of prairie grass and perennial ryegrass increased over the regrowth period from 29.7 to 43.9 g/kg DM and from 25.9 to 72.5 g/kg DM, respectively, whereas tall fescue showed no change at 55.6 g/kg DM. The change in in vitro organic matter digestibility (OMD) with age was 125 and 44 (g/kg DM) for tall fescue and perennial ryegrass, respectively. The OMD of prairie grass decreased following the onset of stem elongation at the 5-leaves/tiller stage of regrowth from 824 to 756 g/kg DM. In this glasshouse study, the pattern of change in K and Ca content was the same as observed in the field but the absolute content, including that of Na, was greatly elevated, particularly in prairie grass. In terms of nutrient content capability, N, P and K were readily taken up by these C3 grasses, while the uptake of Mg and Na appear to reflect genetic differences between species. The differences in forage quality as determined under optimal growth conditions in this study, as compared with field grown forage, are presumed to indicate possible soil nutrient deficiencies in field situations.

2000 ◽  
Vol 40 (8) ◽  
pp. 1059 ◽  
Author(s):  
W. J. Fulkerson ◽  
J. F. M. Fennell ◽  
K. Slack

A grazing study was conducted, over a 3-year period (1997–99), on the subtropical north coast of New South Wales, Australia, to compare the yield of prairie grass (Bromus willdenowii cv. Matua), tall fescue (Festuca arundinacea cv. Vulcan) and perennial ryegrass (Lolium perenne cv. Yatsyn), on a well-drained red krasnozem soil at Wollongbar Agricultural Research Institute (WAI) and on a heavy clay soil at Casino. The effect of grazing interval (equivalent to the time taken to regrow 1.5, 2.5 or 4 leaves/tiller) in spring, and forage quality of prairie grass in winter and spring was also assessed. At both sites, the dry matter (DM) yields of prairie grass over the establishment year and in year 2 were significantly (P<0.001) higher than for the other 2 grass species (mean for 2 years over the 2 sites was 23.8, 8.9 and 7.7 t DM/ha for prairie grass, ryegrass and tall fescue, respectively). In year 3, there was no production of tall fescue or ryegrass at the WAI site while prairie grass produced 11.3 t DM/ha although this was obtained from natural seedling recruitment after the sward was sprayed with a herbicide in February of that year. At the Casino site, ryegrass and tall fescue still made substantial growth in year 3 (3.1 and 2.1 t DM/ha for ryegrass and tall fescue, respectively) but this was significantly below the yields of prairie grass (5.5 t DM/ha). More frequent grazing of prairie grass in spring (equivalent to 1.5 leaves/tiller of regrowth) led to significantly (P<0.05) less plants surviving summer and less seedling recruitment in the following autumn. The annual yield of the 1.5 leaf treatment was significantly (P<0.05) lower than the remaining treatments but only in the third year of the study. Analysis of prairie grass forage samples, taken in June (vegetative sward) and November (reproductive sward), gave magnesium values of less than 0.2% DM which is below the concentration found in ryegrass and that recommended for dairy cattle. The Ca : P and K : (Ca + Mg) ratios in prairie grass improved, as a forage for dairy cows, with regrowth time up to 5 leaves/tiller. Metabolisable energy remained constant with regrowth time in June at 10.8 MJ/kg DM but fell significantly in November from 10.7 MJ/kg DM, immediately post-grazing, to 9.2 MJ/kg DM at the 4.5 leaves/tiller stage of regrowth. In contrast to observations in ryegrass, the water-soluble carbohydrate content of forage samples of prairie grass taken in November showed a substantial increase with regrowth time to over 12% DM at the 3 leaves/tiller stage of regrowth. The high productivity and forage quality of prairie grass obtained over a 3-year period suggests this grass species could be a suitable temperate perennial grass for subtropical dairy pastures. An appropriately long grazing interval in spring seems critical to optimise plant survival over summer and for adequate seed set for seedling recruitment the following autumn. If summer weeds and/or grasses invade to a significant extent, the large seedbank of prairie grass provides the opportunity to spray out the pasture in summer and rely on seedling recruitment to establish a new sward in autumn. The forage quality of prairie grass in winter and spring is similar to perennial ryegrass but the magnesium levels are substantially lower and stock grazing this type of pasture for extended periods would need to be supplemented with this mineral.


2020 ◽  
Vol 47 (3) ◽  
pp. 298-308
Author(s):  
K. R. Idowu ◽  
A. S. Chaudhry ◽  
J. Dolfing ◽  
V. O. A. Ojo

Fungal improvement of the nutritive content of low-quality forages can be affected by several factors among which loss of water-soluble content (WSC) plays a major role. To achieve this aim, two growth conditions i.e. forage-liquid ratios (1:3 and 1:5) and two inoculation times (14 and 28 days) were used to cultivate the selected fungi i.e. Pleurotus ostreatus (PO) at 30°C and Ceriporiopsis rivulosus (CR) at 20°C on Brachiaria decumbens (BD), Andropogon gayanus (AG), Triticum aestivum (TA) straw, Lolium perenne (LP), respectively with the view of selecting the optimal conditions that facilitate the release of WSC. The impact that losses of WSC have on the ability of fungi to improve the nutritive content (i.e. proximate, fibre, secondary metabolites and total antioxidant content) of the forages were then measured using 2 filtering methods i.e. light pump filtering method (LFM) and free flow filtering method (FFM). The optimal conditions that supported increased th soluble was identified as 28th day for both fungi; forage-liquid ratio of 1:5 for both fungi in most of the forages except BD (CR) and BD & AG (PO). The LFM led to lesser or no improvement in the nutritive quality of the upgraded forages while the opposite was recorded with the LFM. The LFM as against the FFM produced upgraded forages with lesser reduction in NDF; similar or higher ADF and lignin contents; and similar reduction in secondary metabolites and TAC when compared with un-improved forages. It can be concluded that the fungal improvement of the nutritive content of low-quality forages was negatively affected by the loss of WSC. It is therefore recommended that fungal improvement of the nutritive quality of low quality forages should be carried out with methods or techniques that facilitates little or no WSC loss in the upgraded forages.


1979 ◽  
Vol 93 (1) ◽  
pp. 13-24 ◽  
Author(s):  
E. A. Garwood ◽  
K. C. Tyson ◽  
J. Sinclair

SUMMARYThe yield and quality of herbage produced by six grasses (perennial ryegrass, cocksfoot, timothy, rough-stalked meadow grass, tall fescue and Italian ryegrass) were examined both without irrigation and under two irrigation regimes. Water was applied according to the potential soil water deficit (potential SWD): the soil was either partially returned to field capacity (FC) after each cut or fully returned to FC whenever the potential SWD reached 25 mm. The swards were cut either at 3 (C3) or 6 (C6) week intervals over a 2 year period.Partial irrigation increased yields by 12–14% in the first year and by 36–58% in the second. Full irrigation produced little more growth than partial irrigation in the first year (maximum SWD, 188 mm) but increased yield by 78–93% in the second, very dry, year (maximum SWD, 311 mm). Under treatment C3 response per unit of water applied was similar with both partial and full irrigation, but under C6 the response was greater with partial (2·86 kg D.M./m3) than with full irrigation (1·79 kg D.M./m3).There were marked differences between the species in their ability to grow under drought conditions in the second year of the experiment. Without irrigation, roughstalked meadow grass and Italian ryegrass did not survive the drought. The performance of tall fescue was markedly superior to both perennial ryegrass and cocksfoot in these conditions. Of the surviving grasses timothy made least growth.


1982 ◽  
Vol 99 (1) ◽  
pp. 153-161 ◽  
Author(s):  
D. A. Davies ◽  
T. E. H. Morgan

SUMMARYHerbage characteristics of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and timothy (Phleum pratense L.) pastures were obtained whilst rotationally grazed by ewes and their single lambs at a fixed stocking rate of 25/ha on an upland site (305 m O.D.) in mid-Wales. Drymatter production of cocksfoot averaged 32·1 kg/ha/day over the 3-year duration of the trial (1975·7) and was 13·3 kg/ha/day lower than that of the other three grass species. This resulted in a 8 kg/ha/day reduction in dry-matter intake on cocksfoot; this was significantly lower (P < 0·05) than that achieved on the other grasses, which were similar to one another around 36 kg/ha/day.In vitro digestibility of the herbage ranked in the order perennial ryegrass > timothy = cocksfoot > tall fescue. Intake of digestible organic matter (DOMI) was lower on cocksfoot than on perennial ryegrass and timothy. Differences were also detected in crude protein, water-soluble carbohydrates and sodium composition between species.Dry-matter intake was positively correlated with herbage growth rates (r = 0·95, P < 0·001) but not to digestibility of herbage on offer (r = 0·18). Both ewe and lamb live-weight gains were positively related to intake of dry matter and DOMI.Reference is made to comparative yield data between the grasses obtained under cutting trials. In the 2nd and 3rd harvest years (1967–1967) growth rates in the grazing experiment were 76, 61, 81 and 80% of the 66·2, 66·7, 67·8 and 65·0 kg D.M./ha/day obtained under a cutting regime on perennial ryegrass, cocksfoot, tall fescue and timothy swards respectively. This illustrates the danger involved in assessing the potential of grasses based on such information.The results are discussed in relation to the value of the species for use under grazing in the uplands.


jpa ◽  
1998 ◽  
Vol 11 (4) ◽  
pp. 487-491 ◽  
Author(s):  
M. H. Hall ◽  
P. J. Levan ◽  
E. H. Cash ◽  
H. W. Harpster ◽  
S. L. Fales

Author(s):  
J. Hodgson ◽  
J.H. Niezen ◽  
F. Montossi ◽  
F. Liu ◽  
B.M. Butler

The results are briefly reported of seven comparative studies on aspects of pasture and animal performance from pastures based on Yorkshire fog (Holcus Zanatus), perennial ryegrass (Lofiurn perenne) or tall fescue (Festuca arundinacea) grown under adequate soil nutrient conditions (e.g., Olsen P 20-30 pg/g) and under continuous or rotational stocking by sheep. Pasture production, as measured by the stocking rate required to maintain specified sward conditions, was 2.5% greater on perennial ryegrass than on Yorkshire fog pastures, and 25% greater on Yorkshire fog than on tall fescue. Differences in liveweight gain and wool production in weaned lambs between pastures were relatively small and inconsistent, but levels of worm egg output were lower for lambs on Yorkshire fog than on tall fescue. The use of polyethylene glycol to bind condensed tannins reduced performance slightly in lambs on Yorkshire fog and tall fescue, but not those on perennial ryegrass. Keywords: condensed tannins, Festuca arundinacea, Holcus lanatus, lamb growth, Lolium perenne, wool production


2000 ◽  
Vol 51 (5) ◽  
pp. 555 ◽  
Author(s):  
K. Slack ◽  
W. J. Fulkerson ◽  
J. M. Scott

This glasshouse study was undertaken to determine the effect of temperature and defoliation on the regrowth of prairie grass (Bromus willdenowii Kunth cv. Matua) in comparison with perennial ryegrass (Lolium perenne L. cv. Dobson). Individual plants of prairie grass and perennial ryegrass were grown in 2 mini-swards with one half as prairie grass and the other as ryegrass. From H0 (13 weeks after sowing) to the completion of the experiment at H3, one sward was maintained at a day/night temperature of 18/10˚C and the other at 25/15˚C. From H0 to H1, prairie grass was defoliated 4 times at the time taken to regrow 1 new leaf per tiller (1-leaf stage), 2 times at the 2-leaf stage, or once at the 4-leaf stage to 60, 90, or 120 mm stubble height. Similarly, ryegrass was defoliated 3 times at the 1- leaf stage, once at the 1-leaf stage then once at the 2-leaf stage, or once at the 3-leaf stage to 30, 60, or 90 mm stubble height. Plants were subsequently harvested at H1, H2, and H3, being the commencement, mid-point, and completion of the full regrowth cycle (4- and 3-leaf stage for prairie grass and ryegrass, respectively). Prairie grass was more adversely affected by frequent defoliation than ryegrass. The combination of high temperature and frequent defoliation reduced growth rates by 66 v. 54%, stubble dry matter (DM) by 50 v. 11%, root DM by 62 v. 45%, and stubble water-soluble carbohydrate (WSC) by 52 v. 21% for prairie grass and ryegrass, respectively. In contrast, ryegrass was more affected by defoliation height than prairie grass, particularly at the higher temperature. Close defoliation and high temperature reduced growth rate by 35 v. 25%, root DM by 18 v. 0%, and stubble WSC by 84% v. 36% for ryegrass and prairie grass, respectively. The number of tillers per plant was reduced by close defoliation, more so at the high temperature in ryegrass but not in prairie grass. Defoliating prairie grass to 90 mm stubble height at the 4-leaf per tiller stage compared with the 1-leaf per tiller led to maximum restoration of stubble WSC reserves as well as maximising leaf and root growth. The higher stubble WSC and greater root DM of prairie grass, together with its ability to maintain growth rates and tillering under high temperature, are attributes which explain why prairie grass appears to be more productive and persistent than ryegrass in a subtropical environment.


Sign in / Sign up

Export Citation Format

Share Document