Effect of Hastened Flowering on Seed Yield and Dry Matter Partitioning in Diverse Soybean Genotypes 1

Crop Science ◽  
1985 ◽  
Vol 25 (6) ◽  
pp. 995-998 ◽  
Author(s):  
L. E. Schweitzer ◽  
J. E. Harper
2016 ◽  
Vol 19 (1) ◽  
pp. 19-28
Author(s):  
M Akter ◽  
QA Khaliq ◽  
MR Islam ◽  
JU Ahmed

An experiment was conducted at the research field of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706 from March to June 2014 to evaluate growth and yield performance of sesame genotypes. Five sesame genotypes i.e. DB-6992, BD-6995, BD-7001, BD-7011 and Hathazari-4 were used in the study. The genotypes significantly differed in photosynthetic rate, dry matter partitioning and seed yield. The earliest genotype was Hathazari-4 and the latest was BD-7011. The highest stem dry weight, leaf dry weight, capsule dry weight, leaf area index, light interception, photosynthetic rate were recorded in genotype Hathazari-4. The number of capsules plant-1 and the number of seeds capsule-1 were also highest in the genotype Hathazari-4, while the lowest was being noticed in the genotype BD- 7001. Weight of 1000-seed was the maximum in genotype BD-6992 and the minimum in the genotype BD- 7011. The highest seed yield (3.52 tha-1) was recorded in the genotype Hathazari-4 and the lowest in the genotypes BD-6992 followed by BD-7001. The highest oil content (41.39%) was recorded in the genotype BD-6992 and the lowest (39.72%) in the genotype Hathazari-4 but the highest oil yield (1.53 t ha-1) was recorded in the genotype Hathazari-4. It may be concluded that the sesame genotype Hathazari-4 may be cultivated for higher seed yield and oil production.Bangladesh Agron. J. 2016, 19(1): 19-28


1990 ◽  
Vol 38 (1) ◽  
pp. 21-44 ◽  
Author(s):  
C. Grashoff

V. faba cultivars including cv. Minica, Kristall, Alfred and Optica were grown with (a) full irrigation, or restricted irrigation (b) after the start of flowering, (c) after the end of flowering, (d) before flowering or (e) during flowering. Irrigation from the start of flowering stimulated vegetative growth but reduced initial reproductive growth and final seed yield compared with restricted water during flowering only. In 1982-84 using cv. Minica, treatment (e) gave high av. seed yields (7 t/ha), optimum harvest index (0.61 g/g) and a relatively small range of seed yields (2.2 t/ha), while (d) gave 7.1 t/ha, lower harvest index (0.57) and a small range of seed yields (1.4 t/ha). The other treatments and no irrigation gave much lower seed yields and a larger range of seed yields. Treatment (c) gave the lowest harvest index. Similar results were obtained with cv. Alfred. It was concluded that the amount and distribution of rainfall was a major reason for variability in seed yield of this crop. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 282 ◽  
Author(s):  
Shoaib Ahmed ◽  
Muhammad Raza ◽  
Tao Zhou ◽  
Sajad Hussain ◽  
Muhammad Khalid ◽  
...  

Soybean production under maize–soybean relay-intercropping system (MSICS) is vulnerable to shading. A study was initiated to investigate the effects of three sowing-times: ST1, 90; ST2, 70; and ST3, 50 days of co-growth period and two phosphorus-rates: P0, 0; and P60, 60 kg P ha−1 on soybean under MSICS. Results revealed that ST3 significantly increased the photosynthetically active radiations, leaf area index, and photosynthetic rate by 72% and 58%, and 61% and 38%, and 6% and 8%, respectively, at full-flowering and full-pod stage of soybean than ST1. Treatment ST3, increased the total dry-matter (TDM) and the highest TDM was reached at full-seed (R6) stage. Similarly, ST3 considerably increased the dry-matter partitioning to pods and seeds, relative to ST1, soybean under ST3 at R6 had 35% and 30% higher pod and seed dry-matter, respectively. Moreover, ST3 exhibited the maximum seed-yield (mean 1829.5 kg ha−1) for both years of this study. Soybean under ST3 with P60 accumulated 38% higher P, and increased the P content in pods and seeds by 36% and 33%, respectively at R6 than ST1. These results imply that by selecting the appropriate sowing-time and phosphorus-rate for soybean, we can increase the TDM and seed-yield of soybean under MSICS.


2019 ◽  
Vol 66 (5) ◽  
pp. 717-729 ◽  
Author(s):  
Changkai Liu ◽  
Xue Wang ◽  
Bingjie Tu ◽  
Yansheng Li ◽  
Xiaobing Liu ◽  
...  

1998 ◽  
Vol 49 (6) ◽  
pp. 999 ◽  
Author(s):  
R. Jettner ◽  
S. P. Loss ◽  
L. D. Martin ◽  
K. H. M. Siddique

Sowing rate influences plant density, canopy development, radiation absorption, dry matter production and its partitioning, and seed yield. The canopy development, radiation interception, and dry matter partitioning of faba bean (cv. Fiord) were examined using 6 sowing rate treatments from 70 to 270 kg/ha in field experiments conducted over 3 years at Northam as part of a larger investigation of sowing rate responses in faba bean in south-western Australia. High sowing rates resulted in significantly earlier canopy closure, larger green area indexes, more radiation absorption, more dry matter accumulation particularly during the early vegetative stages, and greater seed yield than treatments where a low plant density was established. The results suggest that further increases in canopy development, radiation absorption, dry matter accumulation, and seed yield are possible by using sowing rates in excess of 270 kg/ha. The rate of node appearance was relatively constant within and across seasons (1 every 65·9 degree-days), whereas the number of branches per plant declined with increasing plant density, and less branches survived through to maturity at high density. The peak photosynthetically active radiation absorption (75-85%) measured at green area index of 2·9-3·8 in the highest sowing rate treatment in this study is similar to previous reports for other crops. The estimated radiation use efflciency (1·30 g/MJ) was constant across sowing rate treatments and seasons. High sowing rates produced tall crops with the lowest pods further from the soil surface than those at low plant density, and hence, mechanical harvesting was easier. The growth of individual plants may have been limited by the low growing season rainfall (266-441 mm) and/or low soil pH (5·0 in CaCl2) at the site, and competition between plants for radiation was probably small even at the highest sowing rate. Early canopy closure and greater dry matter production with high sowing rates may also cause greater suppression of weeds and aphids.


2015 ◽  
Vol 40 (3) ◽  
pp. 333-345
Author(s):  
MSA Khan ◽  
MA Karim ◽  
MM Haque ◽  
AJMS Karim ◽  
MAK Mian

The experiment was conducted at the experimental site of Agronomy Department, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Salna, Gazipur during the period from January to June 2011 to evaluate twenty selected soybean genotypes in respect of growth, dry matter production and yield. Genotypic variations in plant height, leaf area index, dry matter and its distribution, crop growth rate and seed yield were observed. The plant height ranged from 40.33 to 63.17 cm, leaf area index varied from 3.01 to 8.13 at 75 days after emergence, total dry matter ranged from 12.25 to 24.71 g per plant at 90 days after emergence (DAE). The seed yield ranged from 1745 to 3640 kg per hectare. The genotypes BGM 02093, BD 2329, BD 2340, BD 2336, Galarsum, BD 2331 and G00015 yielded 3825, 3447, 3573, 3737, 3115, 3542 and 3762 kg per hectare, respectively and gave higher than others contributed by higher crop growth rate with maximum number of filled pods. Seed yield of soybean was positively related to total dry matter at 45 DAE (Y = 632.19 + 659.31X, R2= 0.46) and 60 DAE (Y= 95.335 + 405.53X, R2 = 0.48). The filled pods per plant had good relationship with seed yield (Y = 1397 + 41.85X, R2 = 0.41) than other components.Bangladesh J. Agril. Res. 40(3): 333-345, September 2015


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 930
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Neil C. Turner ◽  
Kadambot H. M. Siddique ◽  
Feng-Min Li

Phosphorus (P) addition ameliorates the adverse effects of water stress on the seed yield of soybean (Glycine max L.). Previous studies focused on the effect of P on root traits, but little information is available on changes to aboveground traits. In this paper, we show how P addition affects shoot traits and reduces the adverse effects of water stress on the yield. Two soybean genotypes, with contrasting aboveground architectures, were grown in pots to compare the canopy architecture, leaf traits, aboveground dry matter accumulation and yield under two water and three P levels. The addition of P to two soybean genotypes, one with a larger number of branches and greater leaf area on the branches than the other, showed that the increased leaf area distribution on the main stem and branches was associated with increased shoot and root dry weights, which were positively correlated with the number of filled pods, seed number and seed yield and negatively correlated with seed size at maturity under well-watered and cyclic water stress treatments. The leaf P concentration at 65 DAS (flowering stage) and leaf photosynthesis measured shortly after re-watering increased with P addition, while the leaf mass area on the main stem at 65 DAS and maturity and on the branches at maturity increased modestly with P supply and water stress. Evidence is presented that P addition can ameliorate the adverse effects of water stress on yield through increased leaf area, leaf function and aboveground shoot production. We conclude that the increased yields of soybean resulting from increased P and water supplies that were previously shown to be associated with increased root growth and function are mediated through increased shoot growth and function, particularly the greater number of sites for pod production.


1995 ◽  
Vol 75 (3) ◽  
pp. 549-555 ◽  
Author(s):  
N. Harzic ◽  
C. Huyghe ◽  
J. Papineau

DM accumulation and seed yield formation of the dwarf autumn-sown white lupin XA100 were compared with those of the tall cultivar Lunoble for 3 yr and at two plant densities to analyse to what extent the DM allocation to seed could be altered by dwarfism. At maturity, XA100 produced an average of 10.5 t ha−1 of above-ground DM, whereas Lunoble produced 12.3 t ha−1. Seed yield of XA100 (3.59 t ha−1) and Lunoble (3.36 t ha−1) were not significantly different, but the harvest index was 0.38 for XA100 and 0.32 for Lunoble. The reduction of the proportion of DM in XA100 stems was associated with an increase in the proportion of DM allocated to pods. The contribution of each pod order to total seed yield was different for XA100 and Lunoble, with XA100 producing more on the third and fourth branch orders. The low mainstem seed yield of XA100 was associated with late pod and seed abortion. XA100 mean seed weight was 0.287 g, and its seed protein concentration was 382 g kg−1, both of which were higher than for Lunoble. XA100 was not selected for its yield potential. However, no agronomic problem associated with dwarfism was detected in this experiment. Consequently, the characteristics of the dward lupin have to be considered for the breeding of autumn-sown white lupin. Key words: White lupin, dwarfism, growth, dry matter partitioning, seed yield, harvest index


2004 ◽  
Vol 52 (2) ◽  
pp. 157-163
Author(s):  
C. U. Egbo ◽  
M. A. Adagba ◽  
D. K. Adedzwa

Field trials were conducted in the wet seasons of 1997 and 1998 at Makurdi, Otukpo and Yandev in the Southern Guinea Savanna ecological zone of Nigeria to study the responses of ten soybean genotypes to intercropping. The experiment was laid out in a randomised complete block design. The genotypes TGX 1807-19F, NCRI-Soy2, Cameroon Late and TGX 1485-1D had the highest grain yield. All the Land Equivalent Ratio (LER) values were higher than unity, indicating that there is great advantage in intercropping maize with soybean. The yield of soybean was positively correlated with the days to 50% flowering, days to maturity, plant height, pods/plant and leaf area, indicating that an improvement in any of these traits will be reflected in an increase in seed yield. There was a significant genotype × yield × location interaction for all traits. This suggests that none of these factors acted independently. Similarly, the genotype × location interaction was more important than the genotype × year interaction for seed yield, indicating that the yield response of the ten soybean genotypes varied across locations rather than across years. Therefore, using more testing sites for evaluation may be more important than the number of years.


Sign in / Sign up

Export Citation Format

Share Document