Dry matter partitioning and K distribution of vegetable soybean genotypes with higher potassium efficiency

2019 ◽  
Vol 66 (5) ◽  
pp. 717-729 ◽  
Author(s):  
Changkai Liu ◽  
Xue Wang ◽  
Bingjie Tu ◽  
Yansheng Li ◽  
Xiaobing Liu ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1796
Author(s):  
Changkai Liu ◽  
Bingjie Tu ◽  
Xue Wang ◽  
Yansheng Li ◽  
Qiuying Zhang ◽  
...  

Significant differences have been reported in root K+ uptake between high potassium efficiency (HKE) and low potassium efficiency (LKE) in vegetable soybean genotypes. The ideal morphological and physiological characteristics of HKE have been defined. However, the mechanism by which HKE vegetable soybean genotypes efficiently uptake K remains unclear. By using representative materials, this study investigated the responses of root development to low K (LK) stress, and identified and assessed the key genes affecting high-efficiency K uptake between HKE and LKE vegetable soybean roots. The root growth of LKE was significantly inhibited under the LK condition. Compared with LKE, HKE had more lateral roots in both LK and CK (control) conditions. Lateral root of HKE was more preferentially responsive to exogenous IAA, with a wider response threshold to IAA concentration (from 0.1 to 1 µM). Transcriptome analysis revealed that LK induced transport-related genes up-regulated in HKE compared with LKE. In HKE, homologous genes of a K channel encoding gene potassium channel AKT1 (AKT1) and a K transporter gene high-affinity K+ transporter 5 (HAK5) were both highly expressed under the LK stress. Additionally, genes related to plant hormones signal transductions were also identified differentially expressed between the two genotypes. Plant hormone signaling involved in root morphological regulation pathways may play significant roles in improving the efficiency of vegetable soybean K+ uptake. A diagram showing possible molecular mechanisms in regulating root high-efficiency uptake K+ in vegetable soybean is proposed.


2020 ◽  
Vol 8 (5) ◽  
pp. 2667-2669
Author(s):  
Samarth Tewari ◽  
Gurvinder Singh ◽  
Avikal Kumar ◽  
Narendra Bhandari ◽  
Saurabh Gangola

2020 ◽  
Vol 207 (1) ◽  
pp. 120-127
Author(s):  
Yusuke Masuya ◽  
Etsushi Kumagai ◽  
Maya Matsunami ◽  
Hiroyuki Shimono

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 671
Author(s):  
Nagaraju Shilpashree ◽  
Sarojinikunjamma Nirmala Devi ◽  
Dalasanuru Chandregowda Manjunathagowda ◽  
Anjanappa Muddappa ◽  
Shaimaa A. M. Abdelmohsen ◽  
...  

Vegetable soybean production is dependent on the development of vegetable type varieties that would be achieved by the use of germplasm to evolve new agronomically superior yielding vegetable type with beneficial biochemical traits. This can be accomplished by a better understanding of genetics, which is why the research was conducted to reveal the quantitative genetics of vegetable soybean genotypes. Genetic variability of main morphological traits in vegetable soybean genotypes and their divergence was estimated, as a result of the magnitude of genotypic variation (GV), and phenotypic variation (PV) of traits varied among the genotypes. All traits showed high heritability (h2) associated with high genetic advance percentage mean (GAM). Therefore, these variable traits are potential for genetic improvement of vegetable type soybean. Genetic diversity is the prime need for breeding, and the magnitude of genetic diversity values were maximized among specific genotypes. Eight clusters were found for all genotypes; cluster VIII and cluster I were considered to have the most diversity. Cluster VIII consisted of two genotypes (GM-6 and GM-27), based on the mean outcomes of the high yield attributing traits. Hence, these two (GM-6, GM-27) genotypes can be advanced for commercial cultivation; furthermore, other genotypes can be used as source of breeding lines for genetic improvement of vegetable soybean.


jpa ◽  
1991 ◽  
Vol 4 (3) ◽  
pp. 395-399 ◽  
Author(s):  
Tadesse Mebrahtu ◽  
Ali Mohamed ◽  
Wondi Mersie

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanullah ◽  
Shah Khalid ◽  
Farhan Khalil ◽  
Mohamed Soliman Elshikh ◽  
Mona S. Alwahibi ◽  
...  

AbstractThe dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015–2016 (Y1) to 2016–2017 (Y2) having semiarid climate. Four summer crops, pearl millet (Pennisetum typhoidum L.), sorghum (Sorghum bicolor L.) and mungbean (Vigna radiata L.) and pigeonpea (Cajanus cajan L.) and four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes.


2016 ◽  
Vol 44 (1) ◽  
pp. 245-249 ◽  
Author(s):  
Attila OMBÓDI ◽  
Andrea LUGASI ◽  
Hussein Gehad DAOOD ◽  
Mária BERKI ◽  
Lajos HELYES

Irrigation is a prerequisite for economical onion production under dry conditions. However, its effect on dry matter and nutrient content often remains a concern for growers. A direct sown onion hybrid was grown under open field, rain-fed and irrigated conditions for three years, investigating the effects of air temperature and water supply on some nutritive constituents. Dry matter, storage sugar, total flavonol and total polyphenol content showed strong positive correlation with average air temperature and negative correlation with water supply. However, irrigation had a positive effect on storage sugar and dry matter content. Presumably better water supply during dry periods ensured by irrigation provided the basis for higher photosynthetic production, and hereby more dry matter partitioning and accumulation in the bulb, a storage organ. An unexpected decrease in vitamin C content was experienced in 2011 and 2012, compared to the result of 2010, which was explained by the hot and dry conditions of the pre-harvest irrigation cut-off period. Fibre and ash content was found to be the most stable nutritional characteristics, affected neither by the environmental conditions, nor by the irrigation. Irrigation has proved to be very beneficial for direct sown onion, doubling bulb yield while not affecting the nutritive quality negatively.


Sign in / Sign up

Export Citation Format

Share Document