Biotic Stress and Yield Loss.

Crop Science ◽  
2002 ◽  
Vol 42 (2) ◽  
pp. 656 ◽  
Author(s):  
D. Ames Herbert
Keyword(s):  
2021 ◽  
Vol 11 (5) ◽  
pp. 2282
Author(s):  
Masudulla Khan ◽  
Azhar U. Khan ◽  
Mohd Abul Hasan ◽  
Krishna Kumar Yadav ◽  
Marina M. C. Pinto ◽  
...  

In the present era, the global need for food is increasing rapidly; nanomaterials are a useful tool for improving crop production and yield. The application of nanomaterials can improve plant growth parameters. Biotic stress is induced by many microbes in crops and causes disease and high yield loss. Every year, approximately 20–40% of crop yield is lost due to plant diseases caused by various pests and pathogens. Current plant disease or biotic stress management mainly relies on toxic fungicides and pesticides that are potentially harmful to the environment. Nanotechnology emerged as an alternative for the sustainable and eco-friendly management of biotic stress induced by pests and pathogens on crops. In this review article, we assess the role and impact of different nanoparticles in plant disease management, and this review explores the direction in which nanoparticles can be utilized for improving plant growth and crop yield.


2001 ◽  
Vol 38 (10) ◽  
pp. 38-5572-38-5572
Keyword(s):  

TAPPI Journal ◽  
2013 ◽  
Vol 12 (10) ◽  
pp. 33-41 ◽  
Author(s):  
BRIAN N. BROGDON

This investigation evaluates how higher reaction temperatures or oxidant reinforcement of caustic extraction affects chlorine dioxide consumption during elemental chlorine-free bleaching of North American hardwood pulps. Bleaching data from the published literature were used to develop statistical response surface models for chlorine dioxide delignification and brightening sequences for a variety of hardwood pulps. The effects of higher (EO) temperature and of peroxide reinforcement were estimated from observations reported in the literature. The addition of peroxide to an (EO) stage roughly displaces 0.6 to 1.2 kg chlorine dioxide per kilogram peroxide used in elemental chlorine-free (ECF) bleach sequences. Increasing the (EO) temperature by Δ20°C (e.g., 70°C to 90°C) lowers the overall chlorine dioxide demand by 0.4 to 1.5 kg. Unlike what is observed for ECF softwood bleaching, the presented findings suggest that hot oxidant-reinforced extraction stages result in somewhat higher bleaching costs when compared to milder alkaline extraction stages for hardwoods. The substitution of an (EOP) in place of (EO) resulted in small changes to the overall bleaching cost. The models employed in this study did not take into account pulp bleaching shrinkage (yield loss), to simplify the calculations.


Author(s):  
Satish Kodali ◽  
Chen Zhe ◽  
Chong Khiam Oh

Abstract Nanoprobing is one of the key characterization techniques for soft defect localization in SRAM. DC transistor performance metrics could be used to identify the root cause of the fail mode. One such case report where nanoprobing was applied to a wafer impacted by significant SRAM yield loss is presented in this paper where standard FIB cross-section on hard fail sites and top down delayered inspection did not reveal any obvious defects. The authors performed nanoprobing DC characterization measurements followed by capacitance-voltage (CV) measurements. Two probe CV measurement was then performed between the gate and drain of the device with source and bulk floating. The authors identified valuable process marginality at the gate to lightly doped drain overlap region. Physical characterization on an inline split wafer identified residual deposits on the BL contacts potentially blocking the implant. Enhanced cleans for resist removal was implemented as a fix for the fail mode.


Author(s):  
Wing Chiu Tam ◽  
Osei Poku ◽  
R. D. (Shawn) Blanton

Abstract Systematic defects due to design-process interactions are a dominant component of integrated circuit (IC) yield loss in nano-scaled technologies. Test structures do not adequately represent the product in terms of feature diversity and feature volume, and therefore are unable to identify all the systematic defects that affect the product. This paper describes a method that uses diagnosis to identify layout features that do not yield as expected. Specifically, clustering techniques are applied to layout snippets of diagnosis-implicated regions from (ideally) a statistically-significant number of IC failures for identifying feature commonalties. Experiments involving an industrial chip demonstrate the identification of possible systematic yield loss due to lithographic hotspots.


Author(s):  
J. N. C. de Luna ◽  
M. O. del Fierro ◽  
J. L. Muñoz

Abstract An advanced flash bootblock device was exceeding current leakage specifications on certain pins. Physical analysis showed pinholes on the gate oxide of the n-channel transistor at the input buffer circuit of the affected pins. The fallout contributed ~1% to factory yield loss and was suspected to be caused by electrostatic discharge or ESD somewhere in the assembly and test process. Root cause investigation narrowed down the source to a charged core picker inside the automated test equipment handlers. By using an electromagnetic interference (EMI) locator, we were able to observe in real-time the high amplitude electromagnetic pulse created by this ESD event. Installing air ionizers inside the testers solved the problem.


Author(s):  
J. Douglass ◽  
T. D. Myers ◽  
F. Tsai ◽  
R. Ketcheson ◽  
J. Errett

Abstract This paper describes how the authors used a combination of focused ion beam (FIB) microprobing, transmission electron microscopy (TEM), and data and process analysis to determine that localized water residue was causing a 6% yield loss at die sort.


Sign in / Sign up

Export Citation Format

Share Document