Pathology of Seed Deterioration

Author(s):  
Dennis C. McGee
Keyword(s):  
2008 ◽  
Vol 36 (3) ◽  
pp. 524-533
Author(s):  
F.C. Simões ◽  
R. Usberti ◽  
P.D.O. Paiva

1988 ◽  
Vol 18 (4) ◽  
pp. 298-299
Author(s):  
L.O. Copeland
Keyword(s):  

2020 ◽  
Vol 5 (1) ◽  
pp. 52
Author(s):  
Ernayunita Ernayunita ◽  
Taryono Taryono ◽  
Prapto Yudono

Oil palm backcross 1 is the result of the crossing between E. oleifera and E. guineensis, followed by backcrossing to one of its parents. It has several advantages, including slow height growth and good oil quality, thereby having the potential to be developed. However, it also has a short seed shelf life, which might be inherited from E. oleifera that has relatively quick seed deterioration. This is problem to the breeding program, and there have not been many studies on the seed deterioration process. A histological examination can determine the composition of food reserves in seed endosperm tissue. Therefore, it is necessary to assess the histochemistry of seeds concerning the process of seed deterioration. Histochemical tests with Sudan III, Milon, and IKI reagents were used as histochemical tests of fat, protein and carbohydrate seed content with different seed storage periods, i.e. 4, 3, 2, and less than 1 year. The result showed that the fat content decreased during the storage periods. Based on carbohydrates and proteins staining, there were only very few substances , which were difficult to distinguish among the storage periods, so that this analysis could not be used as the determining indicator of seed deterioration. The fat content was a determining factor of seed deterioration and quality. The oil palm seed storage up to 3-4 years led to the reduction in the fat content in significant quantities compared to the fresh seeds stored less than 1 year as they still contained a lot of fat in the cell.


2014 ◽  
Vol 7 (4) ◽  
pp. 97-115 ◽  
Author(s):  
M.A. El-Metwall ◽  
Aml E.A. El-Saidy ◽  
K.M. Abd El-Hai

2019 ◽  
Vol 29 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Richard H. Ellis

AbstractThe long-standing hypothesis that seed quality improves during seed filling, is greatest at the end of seed filling, and declines thereafter (because seed deterioration was assumed to begin then), provided a template for research in seed quality development. It was rejected by investigations where seed quality was shown to improve throughout both seed development and maturation until harvest maturity, before seed deterioration was first observed. Several other temporal patterns of seed quality development and decline have also been reported. These are portrayed and compared. The assessment suggests that the original hypothesis was too simple, because it combined several component hypotheses: (a) the seed improvement (only) phase ends before seed deterioration (only) commences; (b) there is only a brief single point in time during seed development and maturation when, in all circumstances, seed quality is maximal; (c) the seed quality improvement phase coincides perfectly with seed filling, with deterioration only post-seed filling. It is concluded that the search for the single point of maximum seed quality was a false quest because (a) seed improvement and deterioration may cycle (sequentially if not simultaneously) during seed development and maturation; (b) the relative sensitivity of the rates of improvement and deterioration to environment may differ; (c) the period of maximum quality may be brief or extended. Hence, when maximum quality is first attained, and for how long it is maintained, during seed development and maturation varies with genotype and environment. This is pertinent to quality seed production in current and future climates as it will be affected by climate change and a likelihood of more frequent coincidence of brief periods of extreme temperatures with highly sensitive phases of seed development and maturation. This is a possible tipping point for food security and for ecological diversity.


2019 ◽  
Vol 41 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Damrongvudhi Onwimol ◽  
Thunyapuk Rongsangchaicharean ◽  
Pitipong Thobunluepop ◽  
Tanapon Chaisan ◽  
Wanchai Chanprasert

Abstract: The evaluation of seed deterioration is very important to control the quality of the seeds stored. This study aimed to investigate the potential of fast ethanol assay for seed quality assessment of maize stored under different conditions. The first experiment was to determine the incubating temperature, incubating time, and amount of seed used in the assay. The results showed that the best protocol for the detection of headspace ethanol was incubation of 3 g of maize seed with 20% moisture content (wet basis) in a 20 mL gas chromatography vial at 70 °C for 1.5 h. The assay induced approximately 200-700 µg.L-1 of headspace ethanol, which was sufficient to identify seeds with different vigour levels. In the second experiment, the optimal conditions were used for quality assessment in aged maize seed stored for 12 months under different storage conditions. The increase in the ethanol production of stored maize seed under the controlled conditions (15 °C and 20% RH in the hermetic seal) was lower than under ambient conditions. The ethanol production levels of maize seed samples at the start of storage was significantly lesser than at six months storage (p < 0.05). The test limitations in deteriorated seed with different cultivars and ages will be discussed.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 186
Author(s):  
Luciano Antônio Ebone ◽  
Andréia Caverzan ◽  
Diógenes Cecchin Silveira ◽  
Luciano de Oliveira Siqueira ◽  
Nadia Canali Lângaro ◽  
...  

Seed deterioration is an important topic in plant science, as the majority of cultivated species use seeds as their means of propagation; however, due to its complexity, the process of seed deterioration has not yet been completely elucidated. Three soybean cultivars (BMX Raio, BMX Zeus, and DM 53i54) exposed to four distinct periods of accelerated aging (0, 3, 6 and 9 days) in a fully randomized experimental design. Initially, vigor and germination tests were performed. The activity of superoxide dismutase, catalase, ascorbate peroxidase enzymes, hydrogen peroxide, malonaldehyde, DNA oxidation, macromolecules and mineral content, and Maillard reactions were quantified in the embryonic axis. Results showed that DNA did not suffer degradation or oxidation. In terms of consumption of reserves, only sugars were consumed, while levels of protein, starch, and triglycerides were maintained. The Maillard reaction did show potential as an indicator of buffer capacity of protein to ROS. Additionally, levels of catalase and ascorbate peroxidase decreased during the aging process. Moreover, nutrient analysis showed that a high magnesium level in the cultivar bestowed greater resilience to deterioration, which can indicate a potential function of magnesium in the cell structure via reflex in seed aging through seed respiration.


Sign in / Sign up

Export Citation Format

Share Document