scholarly journals Biochemical Profile of the Soybean Seed Embryonic Axis and Its Changes during Accelerated Aging

Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 186
Author(s):  
Luciano Antônio Ebone ◽  
Andréia Caverzan ◽  
Diógenes Cecchin Silveira ◽  
Luciano de Oliveira Siqueira ◽  
Nadia Canali Lângaro ◽  
...  

Seed deterioration is an important topic in plant science, as the majority of cultivated species use seeds as their means of propagation; however, due to its complexity, the process of seed deterioration has not yet been completely elucidated. Three soybean cultivars (BMX Raio, BMX Zeus, and DM 53i54) exposed to four distinct periods of accelerated aging (0, 3, 6 and 9 days) in a fully randomized experimental design. Initially, vigor and germination tests were performed. The activity of superoxide dismutase, catalase, ascorbate peroxidase enzymes, hydrogen peroxide, malonaldehyde, DNA oxidation, macromolecules and mineral content, and Maillard reactions were quantified in the embryonic axis. Results showed that DNA did not suffer degradation or oxidation. In terms of consumption of reserves, only sugars were consumed, while levels of protein, starch, and triglycerides were maintained. The Maillard reaction did show potential as an indicator of buffer capacity of protein to ROS. Additionally, levels of catalase and ascorbate peroxidase decreased during the aging process. Moreover, nutrient analysis showed that a high magnesium level in the cultivar bestowed greater resilience to deterioration, which can indicate a potential function of magnesium in the cell structure via reflex in seed aging through seed respiration.

2013 ◽  
Vol 35 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Denis Santiago da Costa ◽  
Nathalie Bonassa ◽  
Ana Dionisia da Luz Coelho Novembre

Priming is a technique applicable to seeds of various plant species; however, for soybean seed there is little available information correlating such technique to the storage fungi. The objective of this study was to assess hydropriming on soybeans seeds and correlate this technique to occurrence of such fungi. For this, soon after acquisition the soybean seeds, cv. M-SOY 7908 RR, were characterized by: moisture content, mechanical damage, viability (seed germination and seedling emergence) and seed health. A completely randomized experimental design was used with treatments arranged into a factorial scheme 2 × 2 [2 levels of incidence of storage fungi (low and high) × 2 hydropriming (with and without) ]. After application of treatments, the seeds were analyzed by: moisture content, viability (seed germination and seedling emergence) and vigor (first count and accelerated aging). The hydropriming is beneficial to improve the quality of soybean seeds with low incidence of storage fungi, with increments on speed germination (first count) and seed germination after accelerated aging test. The high incidence of microorganisms can reduce the hydropriming benefits.


2007 ◽  
Vol 64 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Maristela Panobianco ◽  
Roberval Daiton Vieira ◽  
Dilermando Perecin

Research on soybean seed has revealed that conductivity test results may be influenced by storage temperature and that an apparent direct relationship between deterioration at low temperatures and loss of cellular membrane integrity is not evident. The objective of this study was to verify the influence of low storage temperatures on electrical conductivity results in other species, such as seeds of two pea cultivars studied temperatures were: 10, 20, 25, 20/10 and 25/10ºC. The physiological potential of the seeds was evaluated every three months during an 18 month storage period using germination, accelerated aging and electrical conductivity tests. The electrical conductivity test was not a good indicator for the degree of seed deterioration stored at low temperatures. Seed deterioration at 10ºC did not seem to be directly related to the loss of membrane integrity, possibly due to membrane repair or reorganization during storage at this temperature.


2020 ◽  
Vol 42 ◽  
Author(s):  
Mayara Rodrigues ◽  
Francisco G. Gomes-Junior ◽  
Julio Marcos-Filho

Abstract: Computerized systems for image analysis are alternatives to decrease the subjectivity and speed of assessment of seed physiological potential. The aim of this study was to determine the efficiency of the Seed Vigor Automated Analysis System (Vigor-S) to identify differences in vigor among soybean seed lots compared to results of the Seed Vigor Imaging System - SVIS® and tests recommended for evaluation of soybean seed vigor. Two cultivars were used, BMX Potência RR and 7166 RSF IPRO, each one represented by ten seed lots with similar germination and vigor differences. The seeds were evaluated regarding germination, vigor (tetrazolium, accelerated aging), seedling emergence in the field and SVIS® and Vigor-S analysis, in three experimental periods. Analysis of variance was used on the data in a completely randomized experimental design (laboratory tests) and in randomized blocks (field tests), and the mean values were compared by the Tukey test (p ≤ 0.05). Separation of the seed lots by Vigor-S was consistent with the results obtained in tests recognized as effective in evaluating the physiological potential of soybean seeds, and there was no interference of the different cultivars on the response pattern for vigor. Analysis through Vigor-S proved to be effective in determination of physiological potential and for composition of quality control programs established by soybean seeds production companies.


2011 ◽  
Vol 3 (3) ◽  
pp. 126-129 ◽  
Author(s):  
Zahra RASTEGAR ◽  
Mohammad SEDGHI ◽  
Saeid KHOMARI


2020 ◽  
pp. 1-9
Author(s):  
Nidia H. Montechiarini ◽  
Luciana Delgado ◽  
Eligio N. Morandi ◽  
Néstor J. Carrillo ◽  
Carlos O. Gosparini

Abstract During soybean seed germination, the expansive growth potential of the embryonic axes is driven by water uptake while cell wall loosening occurs in cells from the elongation zone (EZ). Expansins are regarded as primary promoters of cell wall remodelling in all plant expansion processes, with the expression profiles of the soybean expansins supporting their cell or tissue specificity. Therefore, we used embryonic axes isolated from whole seed and focused on the EZ to study seed germination. Using a suite of degenerate primers, we amplified an abundantly expressed expansin gene at the EZ during soybean embryonic axis germination, which was identified as EXP1 by in silico analyses. Expression studies showed that EXP1 was induced under germination conditions in distilled water and down-regulated by abscisic acid (ABA), which inhibits soybean germination by physiologically restraining expansion. Moreover, we also identified a time window of ABA responsiveness within the first 6 h of incubation in water, after which ABA lost control of both EXP1 expression and embryonic axis germination, thus confirming the early role of EXP1 in the EZ during this process. By contrast, EXP1 levels in the EZ increased even when germination was impaired by osmotically limiting the water availability required to develop the embryonic axes’ growth potential. We propose that these higher EXP1 levels are involved in the fast germination of soybean embryonic axes as soon as water availability is re-established. Taken together, our results show strong EXP1 expression in the EZ and postulate EXP1 as a target candidate for soybean seed germination control.


2004 ◽  
Vol 61 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Roberval Daiton Vieira ◽  
Angelo Scappa Neto ◽  
Sonia Regina Mudrovitsch de Bittencourt ◽  
Maristela Panobianco

Vigor of soybean [Glycine max (L.) Merrill] seeds can be evaluated by measuring the electrical conductivity (EC) of the seed soaking solution, which has shown a satisfactory relationship with field seedling emergence, but has not had aproper definition of range yet. This work studies the relationship between EC and soybean seedling emergence both in the field and laboratory conditions, using twenty two seed lots. Seed water content, standard germination and vigor (EC, accelerated aging and cold tests) were evaluated under laboratory conditions using -0.03; -0.20; -0.40 and -0.60 MPa matric potentials, and field seedling emergence was also observed. There was direct relationship between EC and field seedling emergence (FE). Under laboratory conditions, a decreasing relationship was found between EC and FE as water content in the substrate decreased. Relationships between these two parameters were also found when -0.03; -0.20 and -0.40 MPa matric potentials were used. EC tests can be used successfully to evaluate soybean seed vigor and identify lots with higher or lower field emergence potential.


2021 ◽  
Vol 43 ◽  
Author(s):  
Thiago Barbosa Batista ◽  
Samara Moreira Perissato ◽  
Carlos Henrique Queiroz Rego ◽  
Gustavo Roberto Fonseca de Oliveira ◽  
Fernando Augusto Henning ◽  
...  

Abstract: The analysis of longevity can support decisions about the length of seed lot storage until commercialization, since this characteristic implies the maintenance of viability over time. Seed longevity is analyzed by the p50 test, which expresses the time to lose 50% of the initial viability. Seeds with high vigor and germination have greater physiological potential and, thus, a greater capacity to maintain quality throughout the storage period. However, there has been little research on the correlations between the analysis of p50 (longevity) and the tests used to measure physiological potential (germination and vigor) of lots, which can be used as a tool to make inferences about longevity using the most traditional tests. Thus, the objective of this study was to investigate which tests used to measure the potential of lots can estimate p50. To this end, germination and vigor were evaluated using traditional tests while longevity was assessed in eight soybean seed lots. Correlations and linear regression were tested for the traditional variables versus p50. It was found that the use of accelerated aging, electrical conductivity, and time to 50% radicle protrusion has high potential to estimate longevity as measured by p50.


2014 ◽  
Vol 7 (4) ◽  
pp. 97-115 ◽  
Author(s):  
M.A. El-Metwall ◽  
Aml E.A. El-Saidy ◽  
K.M. Abd El-Hai

Sign in / Sign up

Export Citation Format

Share Document