Lingbaoite, AgTe3, a new silver telluride from the Xiaoqinling gold district, central China

2020 ◽  
Vol 105 (5) ◽  
pp. 745-755
Author(s):  
Wei Jian ◽  
Jingwen Mao ◽  
Bernd Lehmann ◽  
Yanhe Li ◽  
Huishou Ye ◽  
...  

Abstract Lingbaoite, AgTe3, is a new silver telluride discovered in the S60 gold-bearing quartz vein, Xiaoqinling gold district, central China. The new mineral is named after Lingbao city, the municipality of which covers a major part of the Xiaoqinling gold district. Lingbaoite is only microscopically visible and occurs within pyrite as small composite inclusions (<50 μm) that commonly consist of lingbaoite, sylvanite, and chalcopyrite, and locally of bornite, galena, altaite, and stützite. The largest lingbaoite grain is about 30 × 12 μm in size. At least two stages of gold and telluride mineralization are recognized in the lingbaoite-bearing sample set. The first stage is characterized by the deposition of lingbaoite, native tellurium, and sylvanite, within the commonly observed mineral assemblages of lingbaoite + sylvanite + chalcopyrite and sylvanite + native tellurium + stützite. The second stage is characterized by the deposition of Bi-bearing minerals and native gold, within the commonly observed mineral assemblages of rucklidgeite + altaite + volynskite ± hessite ± petzite and rucklidgeite + gold ± altaite. Lingbaoite is opaque and exhibits no internal reflections. In plane-polarized reflected light, lingbaoite shows a creamy yellow reflection color. The calculated density is 7.06 g/cm3. Seventeen WDS spot analyses from 17 different lingbaoite grains gave an empirical formula of Ag0.946Fe0.134Cu0.008Pb0.003 Te2.841S0.067. When considering Ag and Te as the only two essential structural components, the empirical formula is Ag1.00Te3.00. The EBSD and SAED data confirm the structural identity of lingbaoite and synthetic AgTe3. Synthetic AgTe3 is trigonal, space group R3m, with a = 8.645 Å, c = 5.272 Å, V = 341.2 Å3, and Z = 3. The unit-cell parameters of lingbaoite are: a = 8.60 (5) Å, c = 5.40 (18) Å, V = 346 (9) Å3, and Z = 3. Synthetic AgTe3, and by analog lingbaoite, can be viewed as silver-stabilized cubic tellurium, which is an ordered (1:3 Ag:Te) analog of the α-polonium structure (i.e., simple cubic crystal structure). Synthetic AgTe3 becomes a stable phase at above 0.4 GPa, but can also occur in a metastable state at atmospheric pressure. Lingbaoite probably formed through the cooling of polymetallic melt droplets within the hydrothermal system. Lingbaoite and associated minerals (e.g., sylvanite, native tellurium) reveal a previously unrecognized but perhaps common magmatic-hydrothermal process in the Xiaoqinling gold district, which precedes the precipitation of native gold, suggesting that gold mineralization in the Xiaoqinling gold district involves multiple superimposed processes of gold enrichment.

2013 ◽  
Vol 77 (7) ◽  
pp. 3039-3046 ◽  
Author(s):  
D. Topa ◽  
E. Makovicky ◽  
H. Tajedin ◽  
H. Putz ◽  
G. Zagler

AbstractBarikaite, ideally Pb10Ag3(Sb8As11)Σ19S40, is a new mineral species from the Barika Au-Ag deposit, Azarbaijan Province, western Iran. It was formed in fractures developed in silica bands situated in massive banded pyrite and baryte ores. These fractures house veinlets that contain a number of Ag-As-Sb-Pb-rich sulfosalts, tetrahedrite-tennantite, realgar, pyrite and electrum. Barikaite appears as inclusions in guettardite. The mineral is opaque, greyish black with a metallic lustre; it is brittle without any discernible cleavage. In reflected light barikaite is greyish white, pleochroism is distinct, white to dark grey. Internal reflections are absent. In crossed polars, anisotropism is distinct with rotation tints in shades of grey. The reflectance data (%, in air) are: 37.0, 39.3 at 470 nm, 34.1, 36.9 at 546 nm, 33.1, 36.2 at 589 nm and 31.3, 34.1 at 650 nm. The Mohs hardness is 3–3½, microhardness VHN50 exhibits the range 192 – 212, with a mean value of 200 kg mm–2. The average results of five electron-microprobe analyses in a grain are (in wt.%): Pb 35.77(33), Ag 5.8(1), Tl 0.15(08), Sb 18.33(09), As 15.64(16), S 24.00(15), total 99.69(10) wt.%, corresponding to Pb9.31Ag2.90Tl0.04(Sb8.12As11.26)Σ19.36S40.37 (on the basis of 32Me + 40S = 72 a.p.f.u.). The simplified formula, Pb10Ag3(Sb8As11)Σ19S40, is in accordance with the results of a crystal-structure analysis, and requires Pb 37.89, Ag 5.91, Sb 17.79, As 15.05 and S 23.42 (wt.%). The variation of chemical composition is minor, the empirical formula ranging from Pb10.39Ag2.32Tl0.02Sb7.52As11.27S40.49 to Pb9.24Ag2.93Tl0.04Sb8.13As11.35S40.31. Barikaite has monoclinic symmetry, space group P21/n and unit-cell parameters a 8.5325(7) Å, b 8.0749(7) Å, c 24.828(2) Å, and b 99.077(6)o, Z = 1. Calculated density for the empirical formula is 5.34 (g cm–3). The strongest eight lines in the (calculated) powder-diffraction pattern [d in Å(I)(hkl)] are: 3.835(63)(022), 3.646(100)(016), 3.441(60)(212), 3.408(62)(14), 2.972(66)(16), 2.769(91)(222), 2.752(78)(24) and 2.133(54)(402). Barikaite is the N = 4 member of the sartorite homologous series with a near-equal role of As and Sb, which have an ordered distribution pattern in the structure. It is a close homeotype of rathite and more distantly related to dufrénoysite (both distinct, pure arsenian N = 4 members) and it completes the spectrum of Sb-rich members of the sartorite homologous series. The new mineral and its name have been approved by the IMA-CNMNC (IMA 2012-055).


1995 ◽  
Vol 59 (395) ◽  
pp. 305-310 ◽  
Author(s):  
A. C. Roberts ◽  
J. A. R. Stirling ◽  
G. J. C. Carpenter ◽  
A. J. Criddle ◽  
G. C. Jones ◽  
...  

AbstractShannonite, ideally Pb2OCO3, is a new mineral species that occurs as mm-sized white porcellanous crusts, associated with fluorite, at the Grand Reef mine, Graham County, Arizona, USA. Other associated minerals are plumbojarosite, hematite, Mn-oxides, muscovite-2M1, quartz, litharge, massicot, hydrocerussite, minium, and unnamed PbCO3·2PbO. Shannonite is orthorhombic, space group P21221 or P212121, with unit-cell parameters (refined from X-ray powder data): a 9.294(3), b 9.000(3), c 5.133(2) Å, V 429.3(3) Å3, a:b:c 1.0327:1:0.5703, Z = 4. The strongest five lines in the X-ray powder pattern [d in Å (I)(hkl)] are: 4.02(40)(111); 3.215(100)(211); 3.181(90)(121); 2.858(40)(130); 2.564(35)(002). The average of eight electron microprobe analyses is PbO 89.9(5), CO2 (by CHN elemental analyser) 9.70, total 99.60 wt.%. With O = 4, the empirical formula is Pb1.91C1.05O4.00. The calculated density for the empirical formula is 7.31 and for the idealized formula is 7.59 g/cm3. In reflected light, shannonite is colourless-grey to white, with ubiquitous white internal reflections (× 16 objectives), weak anisotropy, barely detectable bireflectance, and no evidence of pleochroism. The calculated refractive index (at 590 nm) is 2.09. Measured reflectance values in air and in oil (× 4 objectives) are tabulated. Transmission electron-microscopy studies reveal that individual crystallites range in size from 10–400 nm, are platy, and are anhedral. Physical properties for cryptocrystalline crusts include: white streak; waxy lustre; opaque; nonfluorescent under both long- and short-wave ultraviolet light; uneven fracture; brittle; VHN100 97 (range 93–100); calculated Mohs’ hardness 3–3½. Shannonite is soluble in concentrated HCl and in dilute HNO3 and H2SO4. The mineral name is for David M. Shannon, who helped collect the samples and who initiated this study.


2010 ◽  
Vol 74 (3) ◽  
pp. 463-468 ◽  
Author(s):  
V. A. Kovalenker ◽  
O. Yu. Plotinskaya ◽  
C. J. Stanley ◽  
A. C. Roberts ◽  
A. M. McDonald ◽  
...  

AbstractKurilite, with the simplified formula, Ag8Te3Se, is a new mineral from the Prasolovskoe epithermal Au-Ag deposit, Kunashir Island, Kuril arc, Russian Federation. It occurs as aggregates up to 2 mm in size, composed of brittle xenomorphic grains, up to several μm in size, in quartz, associated with tetrahedrite, hessite, sylvanite and petzite. Kurilite is opaque, grey, with a metallic lustre and a black streak. Under plane-polarized light, kurilite is white with no observed bireflectance, cleavage, or parting observed. Under crossed polars it appears isotropic without internal reflections. Reflectance values in air and in oil, are tabulated. It has a mean VHN (25 g load) of 99.9 kg/mm2 which equates roughly to a Mohs hardness of 3. Electron microprobe analyses yield a mean composition of Ag 63.71, Au 0.29, Te 29.48, Se 5.04, S 0.07, total 98.71 wt.%. The empirical formula (based on 12 atoms) is (Ag7.97Au0.02)Σ7.99Te3.00(Se0.86Te0.12S0.03)Σ1.01. The calculated density is 7.799 g/cm3 (based on the empirical formula and unit-cell parameters refined from single-crystal data). Kurilite is rhombohedral, R3 or , a 15.80(1), c 19.57(6) Å, V 4231(12)Å3, c:a 1.2386, Z = 15. Its crystal structure remains unsolved. The seven strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.727(20)(131), 2.996(50)(232), 2.510(30)(226,422), 2.201(100)(128,416,342), 2.152(20)(603), 2.079(30)(253), 2.046(20)(336,434). The mineral is named after the locality.


2018 ◽  
Vol 83 (02) ◽  
pp. 233-238
Author(s):  
Frank N. Keutsch ◽  
Dan Topa ◽  
Rie Takagi Fredrickson ◽  
Emil Makovicky ◽  
Werner H. Paar

AbstractAgmantinite, ideally Ag2MnSnS4, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as orange–red crystals up to 100 μm across. Agmantinite is translucent with adamantine lustre and possesses a red streak. It is brittle. Neither fracture nor cleavage were observed. Based on the empirical formula the calculated density is 4.574 g/cm3. On the basis of chemically similar compounds the Mohs hardness is estimated at between 2 to 2½. In plane-polarised light agmantinite is white with red internal reflections. It is weakly bireflectant with no observable pleochroism with red internal reflections. Between crossed polars, agmantinite is weakly anisotropic with reddish brown to greenish grey rotation tints. The reflectances (RminandRmax) for the four standard wavelengths are: 19.7 and 22.0 (470 nm); 20.5 and 23.2 (546 nm); 21.7 and 2.49 (589 nm); and 20.6 and 23.6 (650 nm), respectively.Agmantinite is orthorhombic, space groupP21nm, with unit-cell parameters:a= 6.632(2),b= 6.922(2),c= 8.156(2) Å,V= 374.41(17) Å3,a:b:c0.958:1:1.178 andZ= 2. The crystal structure was refined toR= 0.0575 for 519 reflections withI >2σ(I). Agmantinite is the first known mineral of${M}_{\rm 2}^{\rm I} $MIIMIVS4type that is derived from wurtzite rather than sphalerite by ordered substitution of Zn, analogous to the substitution pattern for deriving stannite from sphalerite. The six strongest X-ray powder-diffraction lines derived from single-crystal X-ray diffraction data [din Å (intensity)] are: 3.51 (s), 3.32 (w), 3.11 (vs), 2.42 (w), 2.04 (m) and 1.88 (m). The empirical formula (based on 8 apfu) is (Ag1.94Cu0.03)Σ1.97(Mn0.98Zn0.05)Σ1.03Sn0.97S4.03.The crystal structure-derived formula is Ag2(Mn0.69Zn0.31)Σ1.00SnS4and the simplified formula is Ag2MnSnS4.The name is for the composition and the new mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2014-083).


2011 ◽  
Vol 75 (2) ◽  
pp. 327-336 ◽  
Author(s):  
S. J. Mills ◽  
A. R. Kampf ◽  
J. Sejkora ◽  
P. M. Adams ◽  
W. D. Birch ◽  
...  

AbstractIangreyite, ideally Ca2Al7(PO4)2(PO3OH)2(OH,F)15·8H2O, is a new mineral (IMA2009-087) from the Silver Coin mine, Nevada, USA and the Krásno ore district, Horní Slavkov, Czech Republic. At Silver Coin, iangreyite occurs as thin, colourless to white or cream, hexagonal tablets up to 0.4 mm in diameter and 0.02 mm thick associated with meurigite-Na, plumbogummite, kidwellite, lipscombite. strengite, chalcosiderite, wardite, leucophosphite, wavellite, goethite, barite, quartz and F-rich perhamite. At Krásno, white, yellowish or light pink iangreyite coatings consist of 0.3 mm wide clusters of minute and very thin intergrown tabular crystals with a maximum diameter of 0.2 mm. Individual iangreyite crystals are transparent with a vitreous lustre, while iangreyite clusters tend to be pearly and translucent. The estimated hardness is 3 on the Mohs scale, the fracture is irregular and the mineral is non-fluorescent under SW and LW ultraviolet light. Individual crystals are somewhat flexible and there is perfect cleavage on ﹛001﹜. The density (Silver Coin), measured by the sink-float method in an aqueous solution of sodium polytungstate, is 2.46(3) g/cm3, while the calculated density is 2.451 g/cm3. Crystals from Silver Coin are uniaxial (+), with the indices of refraction: ε = 1.544(2) and s = 1.554(2), measured in white light, and are non-pleochroic. The empirical formula for iangreyite from Silver Coin (calculated on the basis of 39 anions per formula unit) is: Ca1.42K0.22Na0.09Ba0.03 Sr0.01Al6.51Mg0.09Fe0.02Cu0.01Zn0.01P3.81F5.24H30.21O33.76, while the empirical formula from Krásno is: Ca2.15K0.10Na0.01Ba0.02Sr0.12Al6.28Mg0.01Fe0.12Cu0.08Zn0.01P3.64Si0.43F4.65H29.62O34.35. Iangreyite is trigonal, space group P321 and Z = 1, with the unit-cell parameters (Silver Coin): a = 6.988(1), c = 16.707(3) Å and V= 706.5(2) Å3 and (Krasno): a = 6.989(1), c = 16.782(4) Å and V = 709.8(2) Å3. The structure of iangreyite, modelled from powder data, consists of blocks of the crandallite-type structure that are interconnected along c via corner-sharing of crandallite-block PO4 tetrahedra with A1O2(OH)3 bipyramids. This linkage generates large channels along [110] bounded by 10-member rings of octahedra, tetrahedra and trigonal biyramids, that are occupied by Ca and water molecules.


2011 ◽  
Vol 75 (6) ◽  
pp. 2721-2732 ◽  
Author(s):  
L. Bindi ◽  
F. Nestola ◽  
U. Kolitsch ◽  
A. Guastoni ◽  
F. Zorzi

AbstractFassinaite, ideally Pb22+(S2O3)(CO3), is a new mineral from the Trentini mine, Mount Naro, Vicenza Province, Veneto, Italy (holotype locality). It is also reported from the Erasmus adit, Schwarzleo District, Leogang, Salzburg, Austria and the Friedrich-Christian mine, Schapbach, Black Forest, Baden-Wurttemberg, Germany (cotype localities). At the Italian type locality it occurs as acicular [010]. colourless crystals up to 200 μn long, closely associated with galena, quartz and anglesite. At the Austrian cotype locality it is associated with cerussite, rare sulphur and very rare phosgenite. At the German cotype locality anglesite is the only associated phase. Fassinaite crystals commonly have flat chisel-shaped terminations. They are transparent with vitreous to adamantine lustre and a white streak. Fassinaite is brittle with an irregular fracture and no discernible cleavage; the estimated Mohs hardness is 11/2—2. The calculated density for the type material is 6.084 g cm–3 (on the basis of the empirical formula), whereas the X-ray density is 5.947 g cm–3. In common with other natural lead thiosulphates (i.e. sidpietersite and steverustite) fassinaite has intense internal reflections, which do not allow satisfactory optical data to be collected; the crystals are length-slow and have very high birefringence. The mineral is not fluorescent.Fassinaite is orthorhombic, space group Pnma, with unit-cell parameters (for the holotype material) a = 16.320(2), b = 8.7616(6), c = 4.5809(7) Å, V = 655.0(1) Å3, a:b:c = 1.863:1:0.523, Z = 4. Single-crystal structural studies were carried out on crystals from all three localities: R1(F) values range between 0.0353 and 0.0596. The structure consists of rod-like arrangements of Pb-centred polyhedra that extend along the [010] direction. These ‘rods’ are linked, alternately, by (CO3)2– and (S2O3)2– groups. The (S2O3)2– groups point alternately left and right (in a projection on [001] with [010] set vertical) if the apex occupied by the S2– in the thiosulphate group is defined to be the atom giving the direction. The lead atoms are nine-coordinated by seven oxygen atoms and two sulphur (S2–) atoms. The eight strongest X-ray powder-diffraction lines [d in Å (I/I0) (hkl)] are: 4.410 (39) (101), 4.381 (59) (020), 4.080 (62) (400), 3.504 (75) (301), 3.108 (100) (121), 2.986 (82) (420), 2.952 (49) (221) and 2.736 (60) (321). Electron-microprobe analyses produce an empirical formula Pb2.01(1)(S1.82(2)O3)CO3 (on the basis of six oxygen atoms). The presence of both carbonate and thiosulphate groups was corroborated by Raman spectra, which are discussed in detail. Fassinaite is named after Bruno Fassina (b. 1943), an Italian mineral collector who discovered the mineral in 2009.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 93
Author(s):  
Kai Qu ◽  
Xianzhang Sima ◽  
Guowu Li ◽  
Guang Fan ◽  
Ganfu Shen ◽  
...  

A new mineral species of the mica group, fluorluanshiweiite, ideally KLiAl1.5□0.5(Si3.5Al0.5)O10F2, has been found in the Nanyangshan LCT (Li, Cs, Ta) pegmatite deposit in North Qinling Orogen (NQO), central China. Fluorluanshiweiite can be regarded as the F-dominant analogue at the A site of luanshiweiite or the K-dominant analogue at the I site of voloshinite. It appears mostly in cookeite as a flaky residue, replaced by Cs-rich mica, or in the form of scale aggregates. Most individual grains are <1 mm in size, with the largest being ca. 1 cm, and the periphery is replaced by cookeite. No twinning is observed. The mineral is silvery white as a hand specimen, and in a thin section, it appears grayish-white to colorless, transparent with white streaks, with vitreous luster and pearliness on cleavage faces. It is flexible with micaceous fracture; the Mohs hardness is approximately 3; the cleavage is perfect on {001}; and no parting is observed. The measured and calculated densities are 2.94(3) and 2.898 g/cm3, respectively. Optically, fluorluanshiweiite is biaxial (–), with α = 1.554(1), β = 1.581(1), γ = 1.583(1) (white light), 2V(meas.) = 25° to 35°, 2V(calc.) = 30.05°. The calculated compatibility index based on the empirical formula is −0.014 (superior). An electron microprobe analysis yields the empirical formula calculated based on 10 O atoms and 2 additional anions of (K0.85Rb0.12Cs0.02Na0.03)Σ1.02[Li1.05Al1.44(□0.47Fe0.01Mn0.02)Σ0.5] Σ2.99(Si3.55Al0.45) Σ4O10F2, which can be simplified to KLiAl1.5□0.5(Si3.5Al0.5)O10F2. Fluorluanshiweiite is monoclinic with the space group C2/m and unit cell parameters a = 5.2030(5), b = 8.9894(6), c = 10.1253(9) Å, β = 100.68(1)°, and V = 465.37(7) Å3. The strongest eight lines in the X-ray diffraction data are [d in Å(I)(hkl)]: 8.427(25) (001), 4.519(57) (020), 4.121(25) (021), 3.628(61) (112), 3.350(60) (022), 3.091(46) (112), 2.586(100) (130), and 1.506(45) (312).


2009 ◽  
Vol 73 (1) ◽  
pp. 43-50 ◽  
Author(s):  
R. G. Yusupov ◽  
C. J. Stanley ◽  
M. D. Welch ◽  
J. Spratt ◽  
G. Cressey ◽  
...  

Mavlyanovite, ideally Mn5Si3, is a new mineral from a lamproite diatreme close to the upper reaches of the Koshmansay river, Chatkal ridge, Uzbekistan. It occurs together with unnamed manganese siliciphosphide and manganese silicicarbide minerals in round to ovoid segregations, up to 10 cm in diameter, in volcanic glass. Segregations of hexagonal prismatic mavlyanovite up to 1–2 mm occur in interstices in the matrix and tiny inclusions (1–2 μm) of alabandite and khamrabaevite occur within mavlyanovite. It is opaque with a metallic lustre, has a dark-grey streak, is brittle with a conchoidal fracture and a near-perfect basal cleavage. VHN100 is 1029–1098 kg/mm2 (Mohs hardness ~7). In plane-polarized reflected light, mavlyanovite is a pale-brownish-grey against the accompanying unnamed manganese silicicarbide (white). Reflectance values and colour data are tabulated. Average results of 19 electronmicroprobe analyses give Mn70.84, Fe 6.12, Si 22.57, Ti 0.15, P 0.18, total 99.86 wt.% leading to an empirical formula of (Mn4.66Fe0.40)5.06(Si2.91Ti0.01P0.02)2.94 based on8 a.p.f.u. The calculated density is 6.06 g/cm3, (on the basis of the empirical formula and unit-cell parameters from the structure determination). Mavlyanovite is hexagonal (P63/mcm) with a 6.8971(7), c 4.8075(4) Å, V 198.05(3) Å3 and Z = 2. The structure has been determined and refined to R1 = 0.017, wR2 = 0.044, GoF = 1.16. Mavlyanovite is the naturally-occurring analogue of synthetic Mn5Si3 which is the parent aristotype structure of the Nowotny intermetallic phases studied extensively by the material-science community. It is also the Mn-dominant analogue of xifengite Fe5Si3. The mineral name honours Academician Gani Arifkhanovich Mavlyanov (1910–1988), for his contributions to the understanding of the geology of Uzbekistan.


2013 ◽  
Vol 77 (7) ◽  
pp. 3047-3054 ◽  
Author(s):  
A. R. Kampf ◽  
M. J. Sciberras ◽  
P. A. Williams ◽  
M. Dini ◽  
A. A. Molina Donoso

AbstractThe new mineral leverettite (IMA 2013-011), ideally Cu3CoCl2(OH)6, was found at the Torrecillas mine, Salar Grande, Iquique Province, Chile, where it occurs as a supergene alteration phase in association with akaganéite, anhydrite, chalcophanite, goethite, halite, manganite, pyrite, quartz and todorokite. Crystals of leverettite are steep rhombohedra to 1 mm with {101} prominent and modified by {001}, sometimes forming V-shaped twins by reflection on {10}. The crystals can also form finger-like, parallel stacked growths along the c axis. The new mineral is medium to deep green in colour and has a light green streak. Crystals are transparent with a vitreous lustre. Mohs hardness is ∼3 and the crystals have a brittle tenacity, a perfect cleavage on {101} and a conchoidal fracture. The measured density is 3.64(2) g cm–3 and calculated density based on the empirical formula is 3.709 g cm–3. Optically, leverettite is uniaxial (–) with ω and ε > 1.8 and exhibits pleochroism with O (bluish green) > E (slightly yellowish green). The empirical formula, determined from electron-microprobe analyses is Cu3(Co0.43Cu0.40Mn0.17Ni0.07Mg0.01)Σ1.08Cl1.87O6.13H6. Leverettite is trigonal (hexagonal), space group Rm, unit-cell parameters a = 6.8436(6) and c = 14.064(1) Å, V = 570.42(8) Å3, Z = 3. The eight strongest X-ray powder diffraction lines are [dobs Å (I)(hkl)]: 5.469(90)(101), 4.701(18)(003), 2.905(22)(021), 2.766(100)(113), 2.269(66)(024), 1.822(26)(033), 1.711(33)(220), 1.383(23)(128). The structure, refined to R1 = 0.023 for 183 Fo > 4σF reflections, shows leverettite to be isostructural with herbertsmithite and gillardite.


2005 ◽  
Vol 69 (4) ◽  
pp. 447-453 ◽  
Author(s):  
C. J. Stanley ◽  
A. J. Criddle ◽  
J. Spratt ◽  
A. C. Roberts ◽  
J. T. Szymański ◽  
...  

AbstractKingstonite, ideally Rh3S4, is a new mineral from the Bir Bir river, Yubdo District, Wallaga Province, Ethiopia. It occurs as subhedral, tabular elongate to anhedral inclusions in a Pt-Fe nugget with the associated minerals isoferroplatinum, tetraferroplatinum, a Cu-bearing Pt-Fe alloy, osmium, enriched oxide remnants of osmium, laurite, bowieite, ferrorhodsite and cuprorhodsite. It is opaque with a metallic lustre, has a black streak, is brittle and has a subconchoidal fracture and a good cleavage parallel to [001]. VHN25 is 871–920 kg/mm2. In plane-polarized reflected light, kingstonite is a pale slightly brownish grey colour. It is weakly pleochroic and displays a weak bireflectance. It does not possess internal reflections. The anisotropy is weak to moderate in dull greys and browns. Reflectance data and colour values are tabulated. Average results of twenty electron microprobe analyses on four grains give Rh 46.5, Ir 16.4, Pt 11.2, S 25.6, total 99.7 wt.%. The empirical formula is (Rh2.27Ir0.43Pt0.29)Σ2.99S4.01, based on 7 atoms per formula unit (a.p.f.u.). Kingstonite is monoclinic (C2/m) with a = 10.4616(5), b = 10.7527(5), c = 6.2648(3) Å, β = 109.000(5)°, V = 666.34(1) Å3 (Z = 6). The calculated density is 7.52 g/cm3 (on the basis of the empirical formula and unit-cell parameters refined from powder data). The seven strongest X-ray powder-diffraction lines [d in Å(I) (hkl)] are: 3.156 (100) (310), 3.081 (100) (1̄31), 2.957 (90) (002), 2.234 (60) (202), 1.941 (50) (2̄23), 1.871 (80) (4̄41) and 1.791 (90) (060, 1̄33). The structure of kingstonite was solved and refined to Rp = 3.8%. There are four distinct metal sites with Rh occupancies of 0.64–0.89. Two metal sites are regular RhS6 octahedra that share edges to form a ribbon running parallel to c. The other two metal sites are coordinated by 4 S + 2 Rh and 5 S + 2 Rh and define a puckered Rh6 ring. The ribbons of regular RhS6 octahedra alternate with the columns of Rh6 rings linked by S atoms. S–S bridges also connect the ribbons and columns. As such, the kingstonite structure is essentially that of synthetic Rh3S4. Minor differences in the unit-cell parameters, atom coordinates and displacement parameters of kingstonite and synthetic Rh3S4 arise from the considerable substitution of Ir for Rh. The mineral name honours Gordon Kingston (formerly of Cardiff University) in recognition of his contributions to platinum group element mineralogy and the geology of their mineral deposits.


Sign in / Sign up

Export Citation Format

Share Document