scholarly journals In situ high-temperature Raman and FTIR spectroscopy of the phase transformation of lizardite

2012 ◽  
Vol 97 (11-12) ◽  
pp. 1965-1976 ◽  
Author(s):  
R. Trittschack ◽  
B. Grobety ◽  
M. Koch-Muller
2004 ◽  
Vol 10 (4) ◽  
pp. 470-480 ◽  
Author(s):  
B.P. Bewlay ◽  
S.D. Sitzman ◽  
L.N. Brewer ◽  
M.R. Jackson

Nb–silicide in situ composites have great potential for high-temperature turbine applications. Nb–silicide composites consist of a ductile Nb-based solid solution together with high-strength silicides, such as Nb5Si3and Nb3Si. With the appropriate addition of alloying elements, such as Ti, Hf, Cr, and Al, it is possible to achieve a promising balance of room-temperature fracture toughness, high-temperature creep performance, and oxidation resistance. In Nb–silicide composites generated from metal-rich binary Nb-Si alloys, Nb3Si is unstable and experiences eutectoid decomposition to Nb and Nb5Si3. At high Ti concentrations, Nb3Si is stabilized to room temperature, and the eutectoid decomposition is suppressed. However, the effect of both Ti and Hf additions in quaternary alloys has not been investigated previously. The present article describes the discovery of a low-temperature eutectoid phase transformation during which (Nb)3Si decomposes into (Nb) and (Nb)5Si3, where the (Nb)5Si3possesses the hP16 crystal structure, as opposed to the tI32 crystal structure observed in binary Nb5Si3. The Ti and Hf concentrations were adjusted over the ranges of 21 to 33 (at.%) and 7.5 to 33 (at.%) to understand the effect of bulk composition on the phases present and the eutectoid phase transformation.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 360 ◽  
Author(s):  
Dunji Yu ◽  
Yan Chen ◽  
Lu Huang ◽  
Ke An

Real-time in situ neutron diffraction was used to characterize the crystal structure evolution in a transformation-induced plasticity (TRIP) sheet steel during annealing up to 1000 °C and then cooling to 60 °C. Based on the results of full-pattern Rietveld refinement, critical temperature regions were determined in which the transformations of retained austenite to ferrite and ferrite to high-temperature austenite during heating and the transformation of austenite to ferrite during cooling occurred, respectively. The phase-specific lattice variation with temperature was further analyzed to comprehensively understand the role of carbon diffusion in accordance with phase transformation, which also shed light on the determination of internal stress in retained austenite. These results prove the technique of real-time in situ neutron diffraction as a powerful tool for heat treatment design of novel metallic materials.


Fuel ◽  
2009 ◽  
Vol 88 (6) ◽  
pp. 988-993 ◽  
Author(s):  
S.K. Bhargava ◽  
A. Garg ◽  
N.D. Subasinghe

1983 ◽  
Vol 16 (6) ◽  
pp. 646-648 ◽  
Author(s):  
C. Jourdan ◽  
J. Gastaldi

With a high-temperature camera, designed for in situ synchrotron radiation X-ray topography, the crystallography of the α → β transition in titanium has been studied.


2015 ◽  
Vol 17 (32) ◽  
pp. 20495-20501 ◽  
Author(s):  
S. I. Sadovnikov ◽  
A. I. Gusev ◽  
A. A. Rempel

In situ SEM observation of the transformation “acanthite–argentite” which occurs in nanocrystalline and coarse-crystalline silver sulfide at ∼450 K is performed.


Sign in / Sign up

Export Citation Format

Share Document