The Role of Domestic Administrative Law in the Accountability of Transnational Regulatory Networks: The Case of the ICH

2012 ◽  
Author(s):  
Ayelet L Berman

2018 ◽  
Vol 24 (4) ◽  
pp. 64-68
Author(s):  
N. V. Hryshyna
Keyword(s):  


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong Wang ◽  
Aiping Duan ◽  
Jing Zhang ◽  
Qi Wang ◽  
Yuexian Xing ◽  
...  

AbstractElucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.



Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.



2011 ◽  
Vol 8 (61) ◽  
pp. 1128-1141 ◽  
Author(s):  
P. K. Vinod ◽  
Paula Freire ◽  
Ahmed Rattani ◽  
Andrea Ciliberto ◽  
Frank Uhlmann ◽  
...  

The operating principles of complex regulatory networks are best understood with the help of mathematical modelling rather than by intuitive reasoning. Hereby, we study the dynamics of the mitotic exit (ME) control system in budding yeast by further developing the Queralt's model. A comprehensive systems view of the network regulating ME is provided based on classical experiments in the literature. In this picture, Cdc20–APC is a critical node controlling both cyclin (Clb2 and Clb5) and phosphatase (Cdc14) branches of the regulatory network. On the basis of experimental situations ranging from single to quintuple mutants, the kinetic parameters of the network are estimated. Numerical analysis of the model quantifies the dependence of ME control on the proteolytic and non-proteolytic functions of separase. We show that the requirement of the non-proteolytic function of separase for ME depends on cyclin-dependent kinase activity. The model is also used for the systematic analysis of the recently discovered Cdc14 endocycles. The significance of Cdc14 endocycles in eukaryotic cell cycle control is discussed as well.



2020 ◽  
Vol 13 (12) ◽  
pp. dmm048199

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Kim Landry-Truchon is first author on ‘Deletion of Yy1 in mouse lung epithelium unveils molecular mechanisms governing pleuropulmonary blastoma pathogenesis’, published in DMM. Kim is a research assistant in the lab of Lucie Jeannotte at Centre de recherche du CHU de Québec-Université Laval, Québec, Canada, investigating organ development and the regulatory networks involved. Nicolas is a research assistant in the same lab, investigating the role of master transcription factors during mouse development.



2021 ◽  
Vol 10 (1) ◽  
pp. 1-25
Author(s):  
Ricardo Perlingeiro

Abstract This essay includes a comparative analysis of the traditions of administrative law in Latin American and their impact on the contemporary scene and trends in the general orientations of its administrative justice systems. This analysis is limited to Latin American countries of Iberian origin under the jurisdiction of the Inter-American Court of Human Rights (“I/A Court H.R”). The method followed by the author is to point out the roles attributable to the administrative authorities and to attempt to identify a distinction in Latin America between the “administrative function of implementation”, “control of the legality of administrative decisions” (unrelated to any adjudicative function) and the “protection of rights” (by means of an adjudicative function) while examining their historical genesis and possible future trends. From that perspective, the text discusses certain administrative powers, such as disciplinary or other regulatory powers, and their forms of concrete application; the prerogatives and instruments of the authorities and of their decision-making employees in the exercise of the functions of implementation; the control of administrative decisions by those authorities themselves and by external bodies; and judicial and extrajudicial protection of rights against administrative decisions. The author concludes that Latin American administrative law, despite the fact that its civil-law substantive roots have always coexisted with judicial review typical of common law, is currently tending, on the one hand, to approximate the U.S. model of administrative adjudication and, on the other, to adapt to I/A Court H.R case law with respect to the administrative function of implementation in harmony with the fundamental right to good administration which, combined with a critical re-examination of diffuse control of the legality of administrative rules in court, would safeguard the true role of adjudicating bodies (administrative authorities or courts) in their function of protecting individual rights for the sake of more fair and equitable administrative justice.



2022 ◽  
Vol 12 ◽  
Author(s):  
Rui Gui ◽  
Quanjiao Chen

Viral infection usually leads to cell death. Moderate cell death is a protective innate immune response. By contrast, excessive, uncontrolled cell death causes tissue destruction, cytokine storm, or even host death. Thus, the struggle between the host and virus determines whether the host survives. Influenza A virus (IAV) infection in humans can lead to unbridled hyper-inflammatory reactions and cause serious illnesses and even death. A full understanding of the molecular mechanisms and regulatory networks through which IAVs induce cell death could facilitate the development of more effective antiviral treatments. In this review, we discuss current progress in research on cell death induced by IAV infection and evaluate the role of cell death in IAV replication and disease prognosis.



Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4576
Author(s):  
Hung-Yu Lin ◽  
Hui-Wen Ho ◽  
Yen-Hsiang Chang ◽  
Chun-Jui Wei ◽  
Pei-Yi Chu

Breast cancer (BC) is the most common malignancy among women worldwide. The discovery of regulated cell death processes has enabled advances in the treatment of BC. In the past decade, ferroptosis, a new form of iron-dependent regulated cell death caused by excessive lipid peroxidation has been implicated in the development and therapeutic responses of BC. Intriguingly, the induction of ferroptosis acts to suppress conventional therapy-resistant cells, and to potentiate the effects of immunotherapy. As such, pharmacological or genetic modulation targeting ferroptosis holds great potential for the treatment of drug-resistant cancers. In this review, we present a critical analysis of the current understanding of the molecular mechanisms and regulatory networks involved in ferroptosis, the potential physiological functions of ferroptosis in tumor suppression, its potential in therapeutic targeting, and explore recent advances in the development of therapeutic strategies for BC.



2018 ◽  
Author(s):  
Antonios Kioukis ◽  
Pavlos Pavlidis

The evolution of a population by means of genetic drift and natural selection operating on a gene regulatory network (GRN) of an individual has not been scrutinized in depth. Thus, the relative importance of various evolutionary forces and processes on shaping genetic variability in GRNs is understudied. Furthermore, it is not known if existing tools that identify recent and strong positive selection from genomic sequences, in simple models of evolution, can detect recent positive selection when it operates on GRNs. Here, we propose a simulation framework, called EvoNET, that simulates forward-in-time the evolution of GRNs in a population. Since the population size is finite, random genetic drift is explicitly applied. The fitness of a mutation is not constant, but we evaluate the fitness of each individual by measuring its genetic distance from an optimal genotype. Mutations and recombination may take place from generation to generation, modifying the genotypic composition of the population. Each individual goes through a maturation period, where its GRN reaches equilibrium. At the next step, individuals compete to produce the next generation. As time progresses, the beneficial genotypes push the population higher in the fitness landscape. We examine properties of the GRN evolution such as robustness against the deleterious effect of mutations and the role of genetic drift. We confirm classical results from Andreas Wagner’s work that GRNs show robustness against mutations and we provide new results regarding the interplay between random genetic drift and natural selection.



Pseudomonas ◽  
2008 ◽  
pp. 195-214
Author(s):  
Ute Rmling ◽  
Susanne Hussler
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document