Intermediate Temperature CO2 Capture for Future Clean Energy Production

2019 ◽  
Author(s):  
Takuya Harada ◽  
Aqil Jamal ◽  
T. Alan Hatton
2021 ◽  
Vol 28 (2) ◽  
pp. 271-280
Author(s):  
V. E. Messerle ◽  
A. S. Askarova ◽  
S. A. Bolegenova ◽  
V. Yu. Maximov ◽  
S. A. Bolegenova ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2741 ◽  
Author(s):  
George Lavidas ◽  
Vengatesan Venugopal

At autonomous electricity grids Renewable Energy (RE) contributes significantly to energy production. Offshore resources benefit from higher energy density, smaller visual impacts, and higher availability levels. Offshore locations at the West of Crete obtain wind availability ≈80%, combining this with the installation potential for large scale modern wind turbines (rated power) then expected annual benefits are immense. Temporal variability of production is a limiting factor for wider adaptation of large offshore farms. To this end multi-generation with wave energy can alleviate issues of non-generation for wind. Spatio-temporal correlation of wind and wave energy production exhibit that wind and wave hybrid stations can contribute significant amounts of clean energy, while at the same time reducing spatial constrains and public acceptance issues. Offshore technologies can be combined as co-located or not, altering contribution profiles of wave energy to non-operating wind turbine production. In this study a co-located option contributes up to 626 h per annum, while a non co-located solution is found to complement over 4000 h of a non-operative wind turbine. Findings indicate the opportunities associated not only in terms of capital expenditure reduction, but also in the ever important issue of renewable variability and grid stability.


2019 ◽  
Vol 113 ◽  
pp. 03005
Author(s):  
Enrico Valditerra ◽  
Massimo Rivarolo ◽  
Aristide F. Massardo ◽  
Marco Gualco

Wind turbine installation worldwide has increased at unrested pace, as it represents a 100% clean energy with zero CO2 and pollutant emissions. However, visual and acoustic impact of wind turbines is still a drawback, in particular in urban areas. This paper focuses on the performance evaluation of an innovative horizontal axis ducted wind turbine, installed in the harbour of Genova (Italy) in 2018: the turbine was designed in order to minimize visual and acoustic impacts and maximize electrical energy production, also during low wind speed periods. The preliminary study and experimental analyses, performed by the authors in a previous study, showed promising results in terms of energy production, compared to a traditional generator ( factor >2.5 on power output). In the present paper, the test campaign on a scaled-up prototype, installed in the urban area of Genova, is performed, with a twofold objective: (i) comparison of the ducted innovative turbine with a standard one, in order to verify the increase in energy production; (ii) analysis of the innovative turbine for different wind speeds and directions, evaluating the influence of ambient conditions on performance. Finally, based on the obtained results, an improved setup is proposed for the ducted wind turbine, in order to further increase energy production mitigating its visual impact.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5434 ◽  
Author(s):  
Reem Khan ◽  
Silvana Andreescu

MXenes are recently developed 2D layered nanomaterials that provide unique capabilities for bioanalytical applications. These include high metallic conductivity, large surface area, hydrophilicity, high ion transport properties, low diffusion barrier, biocompatibility, and ease of surface functionalization. MXenes are composed of transition metal carbides, nitrides, or carbonitrides and have a general formula Mn+1Xn, where M is an early transition metal while X is carbon and/or nitrogen. Due to their unique features, MXenes have attracted significant attention in fields such as clean energy production, electronics, fuel cells, supercapacitors, and catalysis. Their composition and layered structure make MXenes attractive for biosensing applications. The high conductivity allows these materials to be used in the design of electrochemical biosensors and the multilayered configuration makes them an efficient immobilization matrix for the retention of activity of the immobilized biomolecules. These properties are applicable to many biosensing systems and applications. This review describes the progress made on the use and application of MXenes in the development of electrochemical and optical biosensors and highlights future needs and opportunities in this field. In particular, opportunities for developing wearable sensors and systems with integrated biomolecule recognition are highlighted.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2860 ◽  
Author(s):  
Fabio Piccinini ◽  
Roberto Pierdicca ◽  
Eva Savina Malinverni

The aim of this manuscript is to define an operational pipeline of work, from data acquisition to the report creation, for the smart management of PV plants. To achieve such an ambitious result, we exploit the implementation of a conceptual model, deployed through a relational database to retrieve any kind of information related to the PV plant. The motivation that drove this research is due to the increasing construction of PV plants. In fact, following European and international investments that heavily stimulated the use of clean energy, the need to maintain PV plants in their maximum efficiency for their whole lifecycle emerged, to bring about benefits from both the ecological and the economic points of view. While the research community focuses on finding new and automatic ways to detect faults automatically, few efforts have been made considering the so-called Operation and Maintenance (O&M). A relational conceptual model may facilitate the management of heterogeneous sources of information, which are common in complex PV plants. The purpose of the present study is to provide companies and insiders with a GIS-based tool to maintain the energy efficiency of a PV plant. Indeed, it is a common practice used by companies dealing with O&M of PV plants to create technical reports about the health status of the plants. This operation, made manually, is very time consuming and error prone. To overcome this latter drawback, this work attempts to encourage the use of GIS in the PV plants O&M, which proves to be efficient to deal with fault management and to assure a good level of energy production. The developed conceptual model, tested on two real case studies, proved to be complete, cost-effective and efficient to be replicated in other existing plants.


2007 ◽  
Vol 18 (3-4) ◽  
pp. 373-392
Author(s):  
Felix Amenumey ◽  
Melissa Pawlisch ◽  
Okechukwu Ukaga

The Clean Energy Resource Teams (CERTs) is a project designed to give local citizens and other stakeholders a voice in planning and determining their energy future. In total, there are seven CERTs operating in seven regions across Minnesota, USA. CERTs connect citizens with technical expertise to facilitate planning and implementation of energy conservation and renewable energy projects. These technical resources are helping the teams identify and prioritize the most appropriate and cost-effective opportunities within their regions. This paper will describe one of these energy teams (the Northeast CERT) and its efforts in promoting clean energy production and conservation. A key product of the Northeast CERT is a strategic energy plan that highlights the region's top energy priorities. As part of its project priorities, the Northeast Minnesota CERT is working to set up demonstration projects at every school and community in the region. Toward this goal, the team is currently collaborating with two schools in the region to set up renewable energy projects such as wind and solar, which in turn would help students to understand that renewables and conservation can and should be an integral part of our energy system.


Sign in / Sign up

Export Citation Format

Share Document