Associated Storage with Enhanced Oil Recovery: Overview of a Large Scale Carbon Capture, Utilization, and Storage Demonstration in Texas, USA

2019 ◽  
Author(s):  
Robert Balch ◽  
Brian McPherson
2019 ◽  
Vol 38 (4) ◽  
pp. 733-750
Author(s):  
Sébastien Chailleux

Analyzing the case of France, this article aims to explain how the development of enhanced oil recovery techniques over the last decade contributed to politicizing the subsurface, that is putting underground resources at the center of social unrest and political debates. France faced a decline of its oil and gas activity in the 1990s, followed by a renewal with subsurface activity in the late 2000s using enhanced oil recovery techniques. An industrial demonstrator for carbon capture and storage was developed between 2010 and 2013 , while projects targeting unconventional oil and gas were pushed forward between 2008 and 2011 before eventually being canceled. We analyze how the credibility, legitimacy, and governance of those techniques were developed and how conflicts made the role of the subsurface for energy transition the target of political choices. The level of political and industrial support and social protest played a key role in building project legitimacy, while the types of narratives and their credibility determined the distinct trajectories of hydraulic fracturing and carbon capture and storage in France. The conflicts over enhanced oil recovery techniques are also explained through the critical assessment of the governance framework that tends to exclude civil society stakeholders. We suggest that these conflicts illustrated a new type of politicization of the subsurface by merging geostrategic concerns with social claims about governance, ecological demands about pollution, and linking local preoccupations to global climate change.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1945 ◽  
Author(s):  
Lars Ingolf Eide ◽  
Melissa Batum ◽  
Tim Dixon ◽  
Zabia Elamin ◽  
Arne Graue ◽  
...  

Presently, the only offshore project for enhanced oil recovery using carbon dioxide, known as CO2-EOR, is in Brazil. Several desk studies have been undertaken, without any projects being implemented. The objective of this review is to investigate barriers to the implementation of large-scale offshore CO2-EOR projects, to identify recent technology developments, and to suggest non-technological incentives that may enable implementation. We examine differences between onshore and offshore CO2-EOR, emerging technologies that could enable projects, as well as approaches and regulatory requirements that may help overcome barriers. Our review shows that there are few, if any, technical barriers to offshore CO2-EOR. However, there are many other barriers to the implementation of offshore CO2-EOR, including: High investment and operation costs, uncertainties about reservoir performance, limited access of CO2 supply, lack of business models, and uncertainties about regulations. This review describes recent technology developments that may remove such barriers and concludes with recommendations for overcoming non-technical barriers. The review is based on a report by the Carbon Sequestration Leadership Forum (CSLF).


Author(s):  
Teresa ADAMCZAK-BIAŁY ◽  
Adam WÓJCICKI

Information presented in the article allows us to introduce one of the ways of reducing anthropogenic greenhouse gas emissions responsible for the temperature increase and climate change. This is the technology of capture and underground storage of carbon dioxide in geologic structures (Carbon Capture and Storage/Sequestration – CCS). Most of the large-scale CCS projects (i.e. capture and storage of an order of magnitude of 1 million tonnes of CO2 per year) operate in the United States and Canada. Many of them are associated with the use of CO2 captured from the industrial processes for the enhanced oil recovery (EOR). The presented examples of projects are: Boundary Dam Integrated Carbon Capture and Sequestration Demonstration Project (Canada), Great Plains Synfuels and Weyburn-Midale Project (Canada), and Kemper County IGCC Project (United States). CCS projects are crucial for demonstrating the technological readiness and reduce the cost of wider commercial implementation of capture and geological storage of CO2. The status of the projects on geological storage of CO2 in 2015 is 15 large-scale CCS projects operating around the world, and 7 projects in execution.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2444-2455 ◽  
Author(s):  
Franklin M. Orr

Summary Recent progress in carbon capture, utilization, and storage (CCUS) is reviewed. Considerable research effort has gone into carbon dioxide (CO2) capture, with many promising separation processes in various stages of development, but only a few have been tested at commercial scale, and considerable additional development will be required to determine competitiveness of new technologies. Processes for direct capture of CO2 from the air are also under development and are starting to be tested at pilot scale. Transportation of CO2 to storage sites by pipeline is well-established, though substantially more pipeline capacity will be required if CCUS is to be undertaken at a large scale. Considerable experience has now been built up in enhanced-oil-recovery (EOR) operations, which have been under way since the 1970s. Storage in deep saline aquifers has also been achieved at scale. Recent large-scale projects that capture and store CO2 are described, as are current and potential future markets for CO2. Potential effects of changes in the US tax code Section 45Q on those markets are summarized. Future deployment of CCUS will depend more on cost reductions for CO2 separations, development of new markets for CO2, and the complexities of project finance than on technical issues associated with storage of CO2 in the subsurface.


2017 ◽  
Vol 57 (2) ◽  
pp. 413
Author(s):  
Christopher Consoli ◽  
Alex Zapantis ◽  
Peter Grubnic ◽  
Lawrence Irlam

In 1972, carbon dioxide (CO2) began to be captured from natural gas processing plants in West Texas and transported via pipeline for enhanced oil recovery (EOR) to oil fields also in Texas. This marked the beginning of carbon capture and storage (CCS) using anthropogenic CO2. Today, there are 22 such large-scale CCS facilities in operation or under construction around the world. These 22 facilities span a wide range of capture technologies and source feedstock as well as a variety of geologic formations and terrains. Seventeen of the facilities capture CO2 primarily for EOR. However, there are also several significant-scale CCS projects using dedicated geological storage options. This paper presents a collation and summary of these projects. Moving forward, if international climate targets and aspirations are to be achieved, CCS will increasingly need to be applied to all high emission industries. In addition to climate change objectives, the fundamentals of energy demand and fossil fuel supply strongly suggests that CCS deployment will need to be rapid and global. The oil and gas sector would be expected to be part of this deployment. Indeed, the oil and gas industry has led the deployment of CCS and this paper explores the future of CCS in this industry.


Sign in / Sign up

Export Citation Format

Share Document