Tensile Properties of Friction Stir Welded AZ31B Mg Alloy

2007 ◽  
Vol 124-126 ◽  
pp. 1357-1360
Author(s):  
Seon Mi Ha ◽  
Sang Shik Kim ◽  
Dong Yim Chang ◽  
Chang Gil Lee ◽  
Sung Joon Kim

The effect of prior T4 heat treatment and subsequent microstructural evolution on tensile behavior of friction stir welded (FSWed) AZ31B-H24 alloy was examined in this study. Selected AZ31B-H24 plates were prior T4 heat treated at 400 for 24 hours and subsequently friction stir welded. The tensile properties, optical micrographs and SEM fractographs for FSWed AZ31B-T4 specimens were compared with those for the H24 counterparts. Prior T4 heat treatment tended to decrease the tensile ductility reduction in FSWed AZ31B-H24 specimen. The tensile ductility reduction mechanism as associated with prior T4 heat treatment is discussed based on detailed micrographic and fractographic observations.

2011 ◽  
Vol 217-218 ◽  
pp. 1123-1128
Author(s):  
Jun Wei Liu ◽  
Shi Qiang Lu ◽  
Xian Juan Dong ◽  
Xuan Xiao

The microstructural evolution and mechanical properties of as cast AZ91 Mg alloy enduring different homogenization conditions were researched. The results show that the peak stress and plasticity obtain improvement with the increase of heat treated time and temperature until 693K. When the temperature is higher than 743K, the sample will occur the over-burned and directly lead to the decrease of mechanical properties. Otherwise, with the increase of heat treated time and temperatures, the second phase gradually precipitate from the solution, while the grain evolution is not obvious. In the compression process for the samples after heat treatment, some twins could be found in the grains.


2020 ◽  
Author(s):  
Hemendra Patle ◽  
Venkateswarlu Badisha ◽  
Yogeshwar Chakrapani Venkatesan ◽  
Siva Irullappasamy ◽  
Ratna Sunil B ◽  
...  

2021 ◽  
Vol 875 ◽  
pp. 203-210
Author(s):  
Talha Ahmed ◽  
Wali Muhammad ◽  
Zaheer Mushtaq ◽  
Mustasim Billah Bhatty ◽  
Hamid Zaigham

In this study, mechanical properties of friction stir welded Aluminum Alloy (AA) 6061 in three different heat treatment conditions i.e. Annealed (O), Artificially aged (T6) and Post Weld Heat Treated (PWHT) were compared. Plates were welded in a butt joint form. Parameters were optimized and joints were fabricated using tool rotational speed and travel speed of 500 rpm and 350 mm/min respectively. Two sets of plates were welded in O condition and out of which one was, later, subjected to post weld artificial aging treatment. Third set was welded in T6 condition. The welds were characterized by macro and microstructure analysis, microhardness measurement and mechanical testing. SEM fractography of the tensile fracture surfaces was also performed. Comparatively better mechanical properties were achieved in the plate with PWHT condition.


2019 ◽  
Vol 1155 ◽  
pp. 71-79
Author(s):  
Mohammadreza Zamani ◽  
Stefania Toschi ◽  
Alessandro Morri ◽  
Lorella Ceschini ◽  
Salem Seifeddine

This study focuses on the role of Mo addition on the mechanical properties of an Al-Si-Cu-Mg alloy in as-cast and heat-treated condition at ambient and elevated temperature. Addition of 0.4 to 0.6 wt.% Mo forms Mo-bearing dispersoid particles which have a relatively high melting point and improve high temperature tensile strength. Ductility suffered in the presence of Mo-bearing particles. Trace addition of Mo up to 0.6 wt.% has a negligible influence on the yield strength and hardness of Al-Si-Cu-Mg alloy in as-cast and heat-treated conditions at ambient temperature and 250 °C.


2010 ◽  
Vol 654-656 ◽  
pp. 448-451 ◽  
Author(s):  
Yuki Tsukamoto ◽  
Satoru Kobayashi ◽  
Takayuki Takasugi

The thermodynamic stability ’- Co3(Al,W) phase (L12) in the Co-Al-W ternary system at 900 °C was investigated through microstructure and EPMA analysis on a heat-treated bulk alloy. To promote microstructural evolution, the bulk alloy was cold rolled before heat treatment. By heating at 900 °C, the ’ phase was formed discontinuously in contact with the -Co (A1) phase. With increasing heat treatment time, however, the fraction of ’ phase decreased while that of , CoAl (B2) and Co3W (D019) phases increased. These results are consistent with our previous work with a diffusion-couple method, indicating that the ’ phase is metastable, and the three phases of, CoAl and Co3W are thermodynamically stable at 900 °C.


2019 ◽  
Vol 22 ◽  
pp. 109-117
Author(s):  
Wesley Walker ◽  
Rudolf Marloth ◽  
Ye Thura Hein ◽  
Omar S. Es-Said

This study aimed to characterize the effects of incomplete solution treatment time on the tensile behavior of 2195 Al-Li alloy. Two sets of plates of 2195 Al-Li alloy received solution heat treatment. One set received the prescribed treatment, held in the furnace for 30 minutes after the material had reached 507°C. The other set was in the furnace for only 30 minutes and did not reach 507°C until after about 15 to 20 minutes. Both set of plates were water quenched. Samples from the plates were then stretched 2.5-3% or 6%, rolled 6%, and rolled 24%, at 0°, 45°, and 90° relative to the rolling direction of the as-received material. The samples were aged at 143°C for 36 hours and air-cooled. Tensile specimens were milled out at 0°, 45°, and 90° relative to the original rolling direction. Tensile testing was performed on all samples. The incomplete heat treatment (incomplete solution treatment) resulted in a significant reduction in strength. This was probably due to the formation of fewer T1 precipitates after aging, thereby reducing the amount which could nucleate during cold work. The fully heat treated samples had higher percent yield strength, ultimate strength, and elongation.


Sign in / Sign up

Export Citation Format

Share Document