Effect of Hybridization and Water Absorption Properties of Flax and Sugar Palm Fibre Reinforced Polymer Composites: A Review

2019 ◽  
Author(s):  
Senthilkumar Krishnasamy ◽  
Chandrasekaran M ◽  
Senthil Muthu Kumar T ◽  
Shahroze R.M. ◽  
Ishak M.R. ◽  
...  

2021 ◽  
pp. 152808372110575
Author(s):  
Adnan Amjad ◽  
Aslina Anjang Ab Rahman ◽  
Habib Awais ◽  
Mohd Shukur Zainol Abidin ◽  
Junaid Khan

Composite holds great promise for future materials considering its advantages such as excellent strength, stiffness, lightweight, and cost-effectiveness. Due to rising environmental concerns, the research speed gradually changes from synthetic polymer composites to natural fibre reinforced polymer composites (NFRPCs). Natural fibres are believed a valuable and robust replacement to synthetic silicates and carbon-based fibres, along with biodegradability, recyclability, low cost, and eco-friendliness. But the incompatibility between natural fibre and polymer matrices and higher moisture absorption percentage of natural fibre limitise their applications. To overcome these flaws, surface treatment of natural fibre and nanofiller addition have become some of the most important aspects to improve the performance of NFRPCs. This review article provides the most recent development on the effect of different nanofiller addition and surface treatment on the mechanical, thermal, and wetting behaviour of NFRPCs. It concludes that the fibre surface treatment and nanofillers in natural fibre polymer composites positively affect mechanical, thermal and water absorption properties. A systematic understanding in this field covers advanced research basics to stimulate investigation for fabricating NFRPCs with excellent performance.



2009 ◽  
Vol 25 (4) ◽  
pp. 233-246 ◽  
Author(s):  
M.Y.M. Zuhri ◽  
S.M. Sapuan ◽  
N. Ismail


Author(s):  
Praveena B A ◽  
Balachandra P Shetty ◽  
Vinayaka N ◽  
Srikanth H V ◽  
Shiv Pratap Singh Yadav ◽  
...  


Author(s):  
M.R.M. Asyraf ◽  
M.R. Ishak ◽  
Agusril Syamsir ◽  
N.M. Nurazzi ◽  
F.A. Sabaruddin ◽  
...  


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Temitope E Odetoye ◽  
Olaide O Ashaolu

— The need to protect the environment has led to renewed research interest in sustainable bio-based materials such as natural fibre-reinforced polymer composites. Parinari polyandra (Benth) fruit shell (PPFS) is a woody biomass residue that is scarcely explored. This work reports the use of parinari as the fiber reinforcement in epoxy resin matrix biocomposites. The biocomposites were prepared from 2mm sized particles using hand layup method and by varying fibre contents from 0 to 40 wt %. The biocomposites affinities for water were determined by short and the long term water absorption tests according to ASTM standards.  Water absorption capabilities of the biocomposites increased with increasing fibre contents while 10 wt% fibre content gave excellent moisture resistance property. The lowest water absorption of  0.01 and 0.2% for short term and long term tests respectively occurred in the 10 wt % filler content which compared very well with the control  at short term test. PPFS is hereby suggested as a suitable natural filler material for bio-epoxy composite with desirable water absorption resistance properties.Keywords— Agricultural waste, Biocomposites, Parinari, Water absorption, West Africa



Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2186 ◽  
Author(s):  
N. M. Nurazzi ◽  
F. A. Sabaruddin ◽  
M. M. Harussani ◽  
S. H. Kamarudin ◽  
M. Rayung ◽  
...  

Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young’s modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength. Although a large number of studies have been conducted on these novel materials, there have only been a few reviews published on their mechanical performance in polymer composites. As a result, in this review we have covered some of the key application factors as well as the mechanical properties of CNTs-reinforced polymer composites. Finally, the potential uses of CNTs hybridised with polymer composites reinforced with natural fibres such as kenaf fibre, oil palm empty fruit bunch (OPEFB) fibre, bamboo fibre, and sugar palm fibre have been highlighted.



Author(s):  
M. Ramesh ◽  
C. Deepa ◽  
M. Tamil Selvan ◽  
L. Rajeshkumar ◽  
D. Balaji ◽  
...  


2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.



2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Francis Dantas ◽  
Kevin Couling ◽  
Gregory J. Gibbons

Abstract The aim of this study was to identify the effect of material type (matrix and reinforcement) and process parameters, on the mechanical properties of 3D Printed long-fibre reinforced polymer composites manufactured using a commercial 3D Printer (Mark Two). The effect of matrix material (Onyx or polyamide), reinforcement type (Carbon, Kevlar®, and HSHT glass), volume of reinforcement, and reinforcement lay-up orientation on both Ultimate Tensile Strength (UTS) and Flexural Modulus were investigated. For Onyx, carbon fibre reinforcement offered the largest increase in both UTS and Flexural Modulus over unreinforced material (1228 ± 19% and 1114 ± 6% respectively). Kevlar® and HSHT also provided improvements but these were less significant. Similarly, for Nylon, the UTS and Flexural Modulus were increased by 1431 ± 56% and 1924 ± 5% by the addition of carbon fibre reinforcement. Statistical analysis indicated that changing the number of layers of reinforcement had the largest impact on both UTS and Flexural Strength, and all parameters were statistically significant.



Sign in / Sign up

Export Citation Format

Share Document