Modeling and Simulation of a Micro-Hydropower System for Rural Electrification (a Case Study of Temecha River, Amhara Region, Ethiopia)

2021 ◽  
Author(s):  
Getnet Belie ◽  
Tilahun Nigussie Gemechu
Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 305 ◽  
Author(s):  
Miguel Uamusse ◽  
Kamshat Tussupova ◽  
Kenneth Persson ◽  
Ronny Berndtsson

UN Sustainable Development Goal (SDG) 7 states that access to affordable, reliable, sustainable, and modern energy should be provided for all by 2030. Mozambique is one of the poorest countries on earth but has abundant supply of energy resources. The electrification rate, however, has been slow. Rural electrification is hampered by lack of basic infrastructure, institutional barriers, and low ability and willingness to pay for energy services. Thus, there is a general gap between electricity supply and demand. In view of this, the present paper investigates supply and demand of electricity for a typical rural case study area in Mozambique. We suggest a nexus approach to improve water, energy, and food security initiated at a local level. Households in the investigated case study area can be connected to a mini-grid hydropower system that allows for energy production to 80–200 households. To increase the economic profitability of the mini-grid hydropower system we suggest including small-scale industry. For the studied rural village, this would be constituted by a small-scale factory for milling of corn and other cereals. Electricity produced can thus be used for food processing but also for pumping water supply to households for domestic use and small-scale irrigated farming lots. The results indicate that the villagers have a real payment capacity of between 8 and 19 USD per MWh of generated hydropower. Benefits of rural electrification are direct. It contributes to improved living conditions for households and provides better nexus security and sustainable development within healthcare, education, and small-scale business development.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Delia Perju ◽  
Harieta Pirlea ◽  
Gabriela-Alina Brusturean ◽  
Dana Silaghi-Perju ◽  
Sorin Marinescu

The European laws and recently the Romanian ones impose more and more strict norms to the large nitrogen dioxide polluters. They are obligated to continuously improve the installations and products so that they limit and reduce the nitrogen dioxide pollution, because it has negative effects on the human health and environment. In this paper are presented these researches made within a case study for the Timi�oara municipality, regarding the modeling and simulation of the nitrogen dioxide dispersion phenomenon coming from various sources in atmosphere with the help of analytical-experimental methods. The mathematical model resulting from these researches is accurately enough to describe the real situation. This was confirmed by comparing the results obtained based on the model with real experimental values.


2018 ◽  
Author(s):  
Aboutaib Brahim ◽  
Bahili Lahoucine ◽  
Fonlupt Cyril ◽  
Virginie Marion ◽  
Sebastiaan Verelst

Author(s):  
Paul C. Okonkwo ◽  
El Manaa Barhoumi ◽  
Wilfred Emori ◽  
Mahaad Issa Shammas ◽  
Paul C. Uzoma ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Ogunjuyigbe Ayodeji Samson Olatunji ◽  
Ayodele Temitope Raphael ◽  
Ibitoye Tahir Yomi

This paper is part of the ongoing research by the Power, Energy, Machine and Drive (PEMD) research group of the Electrical Engineering Department of the University of Ibadan. The paper presents various sites with possible hydrokinetic energy potential in Nigeria with the aim of quantifying their energy potential for rural electrification application. Overview of hydrokinetic technology is also presented with the view of highlighting the opportunities and the challenges of the technology for rural electrification. A case study of using hydrokinetic turbine technology in meeting the energy demand of a proposed civic center in a remote community is demonstrated.  Some of the key findings revealed that Nigeria has many untapped hydrokinetic potential site and if adequately harnessed can improve the energy poverty and boost economic activities especially in the isolated and remote rural communities, where adequate river water resource is available. The total estimated untapped hydrokinetic energy potential in Nigeria is 111.15MW with the Northern part of the country having 68.18MW while the Southern part has 42.97MW. The case study shows that harnessing hydrokinetic energy of potential site is promising for rural electrification. This paper is important as it will serve as an initial requirement for optimal investment in hydrokinetic power development in Nigeria.Article History: Received November 16th 2017; Received in revised form April 7th 2018; Accepted April 15th 2018; Available onlineHow to Cite This Article: Olatunji, O.A.S., Raphael, A.T. and Yomi, I.T. (2018) Hydrokinetic Energy Opportunity for Rural Electrification in Nigeria. Int. Journal of Renewable Energy Development, 7(2), 183-190.https://doi.org/10.14710/ijred.7.2.183-190


Author(s):  
Muhammad Nomani Kabir ◽  
◽  
Yasser M. Alginahi ◽  
Ali I. Mohamed ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document