A General Approach to Investing in the New Modeling and Simulation Tools With A Case Study: Naval Mine Countermeasures Programs,

1995 ◽  
Author(s):  
W. J. Hurley ◽  
B. C. McCaffree ◽  
M. M. Stahl
2021 ◽  
Vol 12 (4) ◽  
pp. 1084-1093
Author(s):  
Youssoupha GUEYE, Et. al.

This article presents the results of a study on the integration of modeling and simulation tools in the teaching of mechanical design. Indeed, optimisation of the design process often uses modelling and simulation tools in mechanical design activities. Thus, to meet the needs of the labour market, training situations in this field we use communication and information technology. In particular, digital tools are used for the development of virtual models intended for sizing and optimisation, and/or validating the behaviour and performance of a system, component, or process. However, their use in the teaching–learning activities of mechanical design give rise to many problems. These problems are often related to the educational use of these tools; the ergonomics of their interfaces and the didactic interaction. Thus, this study proposes in the framework of mechanical design teaching, through a case study, to analyze determinants of the didactic activity of the teacher in order to identify the contingencies of the didactic action. It presents didactic determinants on the process of teaching mechanical design using modeling and simulation tools.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Delia Perju ◽  
Harieta Pirlea ◽  
Gabriela-Alina Brusturean ◽  
Dana Silaghi-Perju ◽  
Sorin Marinescu

The European laws and recently the Romanian ones impose more and more strict norms to the large nitrogen dioxide polluters. They are obligated to continuously improve the installations and products so that they limit and reduce the nitrogen dioxide pollution, because it has negative effects on the human health and environment. In this paper are presented these researches made within a case study for the Timi�oara municipality, regarding the modeling and simulation of the nitrogen dioxide dispersion phenomenon coming from various sources in atmosphere with the help of analytical-experimental methods. The mathematical model resulting from these researches is accurately enough to describe the real situation. This was confirmed by comparing the results obtained based on the model with real experimental values.


2018 ◽  
Author(s):  
Aboutaib Brahim ◽  
Bahili Lahoucine ◽  
Fonlupt Cyril ◽  
Virginie Marion ◽  
Sebastiaan Verelst

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4100
Author(s):  
Mariana Huskinson ◽  
Antonio Galiano-Garrigós ◽  
Ángel Benigno González-Avilés ◽  
M. Isabel Pérez-Millán

Improving the energy performance of existing buildings is one of the main strategies defined by the European Union to reduce global energy costs. Amongst the actions to be carried out in buildings to achieve this objective is working with passive measures adapted to each type of climate. To assist designers in the process of finding appropriate solutions for each building and location, different tools have been developed and since the implementation of building information modeling (BIM), it has been possible to perform an analysis of a building’s life cycle from an energy perspective and other types of analysis such as a comfort analysis. In the case of Spain, the first BIM environment tool has been implemented that deals with the global analysis of a building’s behavior and serves as an alternative to previous methods characterized by their lack of both flexibility and information offered to designers. This paper evaluates and compares the official Spanish energy performance evaluation tool (Cypetherm) released in 2018 using a case study involving the installation of sunlight control devices as part of a building refurbishment. It is intended to determine how databases and simplifications affect the designer’s decision-making. Additionally, the yielded energy results are complemented by a comfort analysis to explore the impact of these improvements from a users’ wellbeing viewpoint. At the end of the process the yielded results still confirm that the simulation remains far from reality and that simulation tools can indeed influence the decision-making process.


2021 ◽  
Vol 11 (11) ◽  
pp. 4982
Author(s):  
Anahita Davoodi ◽  
Peter Johansson ◽  
Myriam Aries

Validation of the EBD-SIM (evidence-based design-simulation) framework, a conceptual framework developed to integrate the use of lighting simulation in the EBD process, suggested that EBD’s post-occupancy evaluation (POE) should be conducted more frequently. A follow-up field study was designed for subjective–objective results implementation in the EBD process using lighting simulation tools. In this real-time case study, the visual comfort of the occupants was evaluated. The visual comfort analysis data were collected via simulations and questionnaires for subjective visual comfort perceptions. The follow-up study, conducted in June, confirmed the results of the original study, conducted in October, but additionally found correlations with annual performance metrics. This study shows that, at least for the variables related to daylight, a POE needs to be conducted at different times of the year to obtain a more comprehensive insight into the users’ perception of the lit environment.


2021 ◽  
Author(s):  
Mayir Mamtimin ◽  
◽  
Jeffrey Crawford ◽  

Due to the volumetric nature of the physics and the measurement, traditional gamma-gamma density tools measure an average bulk density of the formation. However, a bulk measurement is not adequate for certain applications where a more detailed resolution of a radial density profile is necessary. In this paper, a new approach of gamma spectral analysis is introduced focusing on the main Compton scattering angles. Several energy windows are linked to the unique radial layers based on scattering angles and location of interaction. As a result, the density of multiple layers can be calculated. The paper first outlines the main principles and analytical structures to formulate two methods to measure layer densities. Then computer simulation tools are used to simulate realistic tool configuration and measurement response to validate and benchmark efficacies of the outlined methods. Finally, a case study is presented to demonstrate the applicability of these methods using laboratory data. The paper is concluded with a list of other possible applications such as open-hole density and behind-pipe evaluation where layer density can provide more details for the analysis.


Author(s):  
Fabián Cuzme-Rodríguez ◽  
Ana Umaquinga-Criollo ◽  
Luis Suárez-Zambrano ◽  
Henry Farinango-Endara ◽  
Hernán Domínguez-Limaico ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document