Effect of Marine and Mushroom Fungal Derived Bioactive Compounds to Mitigate Methane Gas Production: A Docking Studies on Methyl-Coenzyme M Reductase (MCR)

2021 ◽  
Author(s):  
Mahamudul Hasan ◽  
Md. Mukthar Mia
Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1425
Author(s):  
Yuvaraj Dinakarkumar ◽  
Jothi Ramalingam Rajabathar ◽  
Selvaraj Arokiyaraj ◽  
Iyyappan Jeyaraj ◽  
Sai Ramesh Anjaneyulu ◽  
...  

Methane is a greenhouse gas which poses a great threat to life on earth as its emissions directly contribute to global warming and methane has a 28-fold higher warming potential over that of carbon dioxide. Ruminants have been identified as a major source of methane emission as a result of methanogenesis by their respective gut microbiomes. Various plants produce highly bioactive compounds which can be investigated to find a potential inhibitor of methyl-coenzyme M reductase (the target protein for methanogenesis). To speed up the process and to limit the use of laboratory resources, the present study uses an in-silico molecular docking approach to explore the anti-methanogenic properties of phytochemicals from Cymbopogon citratus, Origanum vulgare, Lavandula officinalis, Cinnamomum zeylanicum, Piper betle, Cuminum cyminum, Ocimum gratissimum, Salvia sclarea, Allium sativum, Rosmarinus officinalis and Thymus vulgaris. A total of 168 compounds from 11 plants were virtually screened. Finally, 25 scrutinized compounds were evaluated against methyl-coenzyme M reductase (MCR) protein using the AutoDock 4.0 program. In conclusion, the study identified 21 out of 25 compounds against inhibition of the MCR protein. Particularly, five compounds: rosmarinic acid (−10.71 kcal/mol), biotin (−9.38 kcal/mol), α-cadinol (−8.16 kcal/mol), (3R,3aS,6R,6aR)-3-(2H-1,3-benzodioxol-4-yl)-6-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-one (−12.21 kcal/mol), and 2,4,7,9-tetramethyl-5decyn4,7diol (−9.02 kcal/mol) showed higher binding energy towards the MCR protein. In turn, these compounds have potential utility as rumen methanogenic inhibitors in the proposed methane inhibitor program. Ultimately, molecular dynamics simulations of rosmarinic acid and (3R,3aS,6R,6aR) -3-(2H-1,3-benzodioxol-4-yl)-6-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-one yielded the best possible interaction and stability with the active site of 5A8K protein for 20 ns.


2021 ◽  
Vol 500 ◽  
pp. 108246
Author(s):  
Ahmed I. Khodair ◽  
Ahmed A. El-Barbary ◽  
Dalia R. Imam ◽  
Nabila A. Kheder ◽  
Faisal Elmalki ◽  
...  

Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Yanli Zhang ◽  
Linley R. Schofield ◽  
Carrie Sang ◽  
Debjit Dey ◽  
Ron S. Ronimus

(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC fromMethanobrevibacter milleraeSM9 was cloned and expressed inEscherichia coliand biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen forα-ketoglutarate. Optimal activity was observed at pH 6.5. The apparentKMfor coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate theVmaxwas 93.9 μmol min−1 mg−1andkcatwas 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.


2020 ◽  
Vol 18 (2) ◽  
pp. 191
Author(s):  
Muchamad Muchlas ◽  
Siti Chuzaemi ◽  
Mashudi Mashudi

<p class="MDPI17abstract"><strong>Objective: </strong>The purpose of this research was to evaluate the effect supplementation of mimosa powder as a source of condensed tannins and a single fatty acid, myristic acid, in a complete feed based on corn stover (<em>Zea mays</em>) using the in-vitro gas production method. This research has been carried out at the Animal Nutrition and Food Laboratory, Faculty of Animal Husbandry, Brawijaya University. The time of the research was conducted in August until December 2019.</p><p class="MDPI17abstract"><strong>Methods: </strong>The experimental design used randomized complete block design by ANOVA consisting four treatments and three replications which were P1= a complete feed based on corn stover (<em>Zea mays</em>) as control Diet (CD) (40% corn stover + 60 % concentrate), P2= (CD) + Mimosa Powder(MP) 1.5 %/kg DM + myristic acid (MA)2% /kg DM, P3= CD + MP 1.5 % /kg DM + MA 3% /kg DM, and P4= CD + MP 1.5 %/kg DM + MA 4 %/kg DM.</p><p class="MDPI17abstract"><strong>Results: </strong>The results showed that the treatments affected total gas production (p&lt;0.01). The highest value for total gas production was found in P1 (86.67 ml/500 mg DM) and the lowest was found in P3 (73.30 ml/500 mg DM). The results showed that gas production decreased concurrently with the increase of MA level. In vitro methane gas and carbon dioxide production was showed different (p&lt;0.05) from the control treatment. The lowest concentration of methane production was in P4 (82863.07 ppm) and the highest concentration was in treatment P1 86530.89 ppm. The highest total carbon dioxide content was P1 (436711.57 ppm) and the lowest concentration was P3 (350287.72 ppm).</p><p class="MDPI17abstract"><strong>Conclusions: </strong>The results of the research concluded that the addition of mimosa powder and 3 different levels of myristic acid in a complete feed based on corn stover can increase the nutritional value of a complete feed and reduce the production of methane gas.</p>


Sign in / Sign up

Export Citation Format

Share Document