The Importance of Li-Ion Batteries Recycling Process Based on Their Characterization and Economical Evaluation

2021 ◽  
Author(s):  
Lucas Fonseca Guimarães ◽  
Amilton Barbosa Botelho Junior ◽  
Denise Crocce Romano Espinosa
2012 ◽  
Vol 207 ◽  
pp. 173-182 ◽  
Author(s):  
T. Georgi-Maschler ◽  
B. Friedrich ◽  
R. Weyhe ◽  
H. Heegn ◽  
M. Rutz

2019 ◽  
Vol 4 (2) ◽  
pp. 105
Author(s):  
Soraya Ulfa Muzayanha ◽  
Cornelius Satria Yudha ◽  
Luthfi Mufidatul Hasanah ◽  
Adrian Nur ◽  
Agus Purwanto

<p>The use of Li-ion batteries has increased with the increasing of portable electronic media. Li-ion batteries have a life cycle hence a recycling process is needed in order to reduce the potential hazard of waste while increasing the economic value of unused battery material, especially its cathode active material. This study used Lithium Nickel Cobalt Oxide (NCA) cathode scrap to be regenerated which NCA material has high energy density and high capacity. The pretreatment process is one of the determinants in the subsequent recycling process. In this study, the effect of heating on the pretreatment process was carried out with variation temperatures of 500-800<sup>0</sup>C to obtain powder which will be recycled. The combination process of the leaching and co-precipitation was used to regenerate the cathode active material. Atomic Absorption Spectrophotometry (AAS) was performed to determine leaching efficiency using 4M H<sub>2</sub>SO<sub>4</sub> at 40<sup>0</sup>C for 3 hours. X-ray Diffraction (XRD) analysis showed that NCA material has been successfully regenerated which the diffraction peaks of NCA material was in accordance with JCPDS standards. The morphology of NCA material was tested using Scanning Electron Microscopy (SEM). Electrochemical testing uses a cylindrical battery at 2.7-4.2 Volt which the initial specific discharge capacity of the power is 62.13 mAh / g.</p>


2021 ◽  
Vol 1044 ◽  
pp. 3-14
Author(s):  
Ahmad Jihad ◽  
Affiano Akbar Nur Pratama ◽  
Salsabila Ainun Nisa ◽  
Shofirul Sholikhatun Nisa ◽  
Cornelius Satria Yudha ◽  
...  

Li-ion batteries are one of the most popular energy storage devices widely applied to various kinds of equipment, such as mobile phones, medical and military equipment, etc. Therefore, due to its numerous advantages, especially on the NMC type, there is a predictable yearly increase in Li-ion batteries' demand. However, even though it is rechargeable, Li-ion batteries also have a usage time limit, thereby increasing the amount of waste disposed of in the environment. Therefore, this study aims to determine the optimum conditions and the potential and challenges from the waste Li-ion battery recycling process, which consists of pretreatment, metal extraction, and product preparation. Data were obtained by studying the literature related to Li-ion battery waste's recycling process, which was then compiled into a review. The results showed that the most optimum recycling process of Li-ion batteries consists of metal extraction by a leaching process that utilizes H2SO4 and H2O2 as leaching and reducing agents, respectively. Furthermore, it was proceeding with the manufacturing of a new Li-ion battery.


2016 ◽  
Vol 78 (9) ◽  
Author(s):  
Farhah Abdillahil Moktamin ◽  
Goh Choo Ta ◽  
Mazlin Mokhtar ◽  
Mohd Rozaimi Ariffin

The generation of waste batteries is increasing due to the wide application and short life span of batteries. The heavy metals used inside a battery are highly toxic and can cause harm to humans and to the environment. However, if waste batteries are recovered properly through a recycling process, precious metals inside the batteries can be extracted. In general, there are three methods for recycling waste batteries, namely pyrometallurgy, hydrometallurgy and bio-hydrometallurgy. This article reviews and discusses the efficiency and effectiveness of these methods in recycling waste batteries. Based on the review, each recycling method has its specific characteristics. The hydrometallurgy method tends to be used for recycling Li-ion batteries while the pyrometallurgy method tends to eliminate plumbum in automotive waste batteries. In general, the hydrometallurgical method is commonly used for recycling batteries due to its shorter process and lower cost. 


2015 ◽  
Vol 3 (21) ◽  
pp. 11493-11502 ◽  
Author(s):  
Eun Jeong Shin ◽  
Soo Kim ◽  
Jae-Kyo Noh ◽  
Dongjin Byun ◽  
Kyung Yoon Chung ◽  
...  

A green process route is proposed to recycle LiFePO4 cathode materials from FePO4·2H2O metastrengite I intermediate phase.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 44
Author(s):  
Eliana G. Pinna ◽  
Norman Toro ◽  
Sandra Gallegos ◽  
Mario H. Rodriguez

In this work, a recycling route for spent Li-ion batteries (LIBs) was developed. For this, the recovery of the metal content in both electrodes (anode and cathode) was investigated. Based on these results, an economic analysis of this recycling process was carried out. The obtained results showed that more than 90% of the material contained in both electrodes was recycled. The dissolution with acetic acid of the metals present in the active cathodic material is thermodynamically viable and the addition of a reducing agent such as hydrogen peroxide improved the spontaneity of the reaction. Dissolutions close to 100% for Li and Co were obtained. In addition, it was determined that the synthesis of lithium and cobalt valuable compounds was viable from the leach liquor, recovering approximately 90% of Co as cobalt oxalate, and 92% of Li as lithium carbonate. Furthermore, carbon graphite and Cu were fully recovered (100%) from the anodes. Finally, the results of the economic analysis showed that the recovered products have a high commercial value and industrial interest, providing an environmentally and economically viable process.


2021 ◽  
Vol 882 (1) ◽  
pp. 012069
Author(s):  
L Prasakti ◽  
A Prasetya ◽  
R M S D Suryohendrasworo ◽  
S N S H Puteri

Abstract In 2025, the demand of Li-ion batteries is estimated to reach 400,000 tons. A strategic effort is needed especially in the battery industry to realize sustainable use of Li-ion batteries. Spent batteries are being recycled using hydrometallurgical process to collect the lithium. This purifying process consists of leaching and precipitation which results in finding of lithium and sodium ions in the wastewater. To use water efficiently, wastewater is projected to be reused in the hydrometallurgical process. In order to do that, metal ions must be reduced from water to meet quality standards. In this experiment, granular activated carbon (GAC) and activated carbon block (CTO) were used as the adsorbent in a 30 minutes semi-continuous system. Samples were taken at 5, 10, 20, and 30 minutes at room temperature. Based on the result, granular activated carbon’s highest percentage of removal were 11.71% for lithium and 19.51% for sodium, and activated carbon block’s highest percentage of removal were 10.33% for lithium and 14.65% for sodium. It is observed from this experiment that the capacity of both adsorbents to remove lithium and sodium ions decreased after 20 minutes.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7153
Author(s):  
Yingqi Lu ◽  
Xu Han ◽  
Zheng Li

The rapid market expansion of Li-ion batteries (LIBs) leads to concerns over the appropriate disposal of hazardous battery waste and the sustainability in the supply of critical materials for LIB production. Technologies and strategies to extend the life of LIBs and reuse the materials have long been sought. Direct recycling is a more effective recycling approach than existing ones with respect to cost, energy consumption, and emissions. This approach has become increasingly more feasible due to digitalization and the adoption of the Internet-of-Things (IoT). To address the question of how IoT could enhance direct recycling of LIBs, we first highlight the importance of direct recycling in tackling the challenges in the supply chain of LIB and discuss the characteristics and application of IoT technologies, which could enhance direct recycling. Finally, we share our perspective on a paradigm where IoT could be integrated into the direct recycling process of LIBs to enhance the efficiency, intelligence, and effectiveness of the recycling process.


Sign in / Sign up

Export Citation Format

Share Document