Cardiotoxicity Effects and Molecular Mechanisms of Ethylparaben in Zebrafish Embryos Based on Transcriptome Analyses

2021 ◽  
Author(s):  
Zunpan Fan ◽  
Yunyi Yang ◽  
Peixuan Hu ◽  
Yaochen Huang ◽  
Huiping Zhang ◽  
...  
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Steffen Just ◽  
Ina Berger ◽  
Benjamin Meder ◽  
David Hassel ◽  
Alexander Hess ◽  
...  

The genetic causes of congenital heart diseases especially cardiac valve disorders are mostly unknown. During the last decade, the zebrafish became an excellent and established model organism (1) to uncover these genetic defects and (2) to elucidate the underlying molecular pathomechanisms. We recently isolated the zebrafish mutation ping pong ( png m683 ) in a large-scale ENU-mutagenesis screen for recessive lethal mutations that perturb cardiac function. png mutant zebrafish embryos show pathologically developed cardiac valves. Due to malformation of the cardiac AV valves, png mutant zebrafish embryos exhibit vigorous regurgitation of blood between the atrium and the ventricle. Furthermore, as a result of the cardiac valve malformation and cardiac dysfunction png mutants die at day 6 post fertilization. Expression of several factors known to be crucial for the proper development and formation of the atrio-ventricluar canal (e.g. notch1b, bmp4 or versican) is significantly altered in png mutant zebrafish hearts. By a positional cloning approach we demonstrate that the ping pong phenotype is caused by a promotor mutation in a zebrafish gene encoding for a novel component of the “transcriptional mediator complex”. This mediator complex is a multi-protein complex that acts as a transcriptional coactivator and transduces informations from transcription factors to the RNA polymerase II. png is strongly expressed in zebrafish as well as human cardiomyocytes. Furthermore, sequence alignments demonstrate the evolutionary conservation of the ping pong gene product. Gene specific knock-down studies by means of modified antisense oligonucleotides reveal a phenocopy of the png mutant phenotype whereas injection of the gene-specific mRNA in png mutant embryos restores the mutant phenotype indicating that png is indeed responsible for the observed phenotype. The zebrafish evolved as an excellent model organism to study the molecular signalling pathways involved in cardiac valve formation. By detailed characterization of the zebrafish line ping pong we will obtain new insights into these molecular mechanisms especially the transcriptional control of valve formation and therefore the pathomechanisms of human cardiac valve disorders.


2021 ◽  
Author(s):  
Jing Du ◽  
Shu-Kai Li ◽  
Liu-Yuan Guan ◽  
Zheng Guo ◽  
Jiang-Fan Yin ◽  
...  

AbstractThe left-right symmetry breaking of vertebrate embryos requires fluid flow (called nodal flow in zebrafish). However, the molecular mechanisms that mediate the asymmetric gene expression regulation under nodal flow remain elusive. In this paper, we report that heat shock factor 1 (HSF1) is asymmetrically activated in the Kuppfer’s vesicle at the early stage of zebrafish embryos in the presence of nodal flow. Deficiency in HSF1 expression caused a significant situs inversus and disrupted gene expression asymmetry of nodal signaling proteins in zebrafish embryos. Further studies demonstrated that HSF1 could be immediately activated by fluid shear stress. The mechanical sensation ability of HSF1 is conserved in a variety of mechanical stimuli in different cell types. Moreover, cilia and the Ca2+-Akt signaling axis are essential for the activation of HSF1 under mechanical stress in vitro and in vivo. Considering the conserved expression of HSF1 in organisms, these findings unveil a fundamental mechanism of gene expression regulation triggered by mechanical clues during embryonic development and other physiological and pathological transformations.


2013 ◽  
Vol 47 (18) ◽  
pp. 10574-10582 ◽  
Author(s):  
Jie Fu ◽  
Jian Han ◽  
Bingsheng Zhou ◽  
Zhiyuan Gong ◽  
Eduarda M. Santos ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Antonella Smeriglio ◽  
Marcella Denaro ◽  
Valeria D’Angelo ◽  
Maria Paola Germanò ◽  
Domenico Trombetta

Citrus juices are a rich source of bioactive compounds with various and well-known health benefits. The aim of this study was to investigate the polyphenols and ascorbic acid content as well as to investigate the antioxidant, anti-inflammatory and anti-angiogenic properties of the juice of an ancient Mediterranean species, Citrus lumia Risso (CLJ). The antioxidant and anti-inflammatory activities were evaluated by several in vitro cell-free and cell-based assays, whereas two different in vivo models, the chick chorioallantoic membrane (CAM) and the zebrafish embryos, were used to characterize the anti-angiogenic properties. Twenty-eight polyphenols were identified by RP-LC-DAD-ESI-MS analysis (flavonoids 68.82% and phenolic acids 31.18%) with 1-caffeoyl-5-feruloylquinic acid and kaempferol 3′-rhamnoside, which represent the most abundant compounds (25.70 and 23.12%, respectively). HPLC-DAD analysis showed a high ascorbic acid content (352 mg/kg of CLJ), which contributes with polyphenols to the marked and dose-dependent antioxidant and anti-inflammatory properties observed. CLJ showed strong and dose-dependent anti-angiogenic activity as highlighted by the inhibition of blood vessel formation on CAMs and the decrease of endogenous alkaline phosphatase on zebrafish embryos. Moreover, within the concentration range tested, no dead or malformed embryos were recorded. Certainly, further studies are needed to investigate the molecular mechanisms underlying these promising biological effects, but considering the evidence of the present study, the use of CLJ as a ready-to drink safe prevention strategy for inflammatory-based diseases correlated to angiogenesis could be justified.


2013 ◽  
Vol 47 (14) ◽  
pp. 8005-8014 ◽  
Author(s):  
Ronny van Aerle ◽  
Anke Lange ◽  
Alex Moorhouse ◽  
Konrad Paszkiewicz ◽  
Katie Ball ◽  
...  

2015 ◽  
Vol 112 (43) ◽  
pp. 13360-13365 ◽  
Author(s):  
Hongmei Duan ◽  
Weihong Ge ◽  
Aifeng Zhang ◽  
Yue Xi ◽  
Zhihua Chen ◽  
...  

Spinal cord injury (SCI) is considered incurable because axonal regeneration in the central nervous system (CNS) is extremely challenging, due to harsh CNS injury environment and weak intrinsic regeneration capability of CNS neurons. We discovered that neurotrophin-3 (NT3)-loaded chitosan provided an excellent microenvironment to facilitate nerve growth, new neurogenesis, and functional recovery of completely transected spinal cord in rats. To acquire mechanistic insight, we conducted a series of comprehensive transcriptome analyses of spinal cord segments at the lesion site, as well as regions immediately rostral and caudal to the lesion, over a period of 90 days after SCI. Using weighted gene coexpression network analysis (WGCNA), we established gene modules/programs corresponding to various pathological events at different times after SCI. These objective measures of gene module expression also revealed that enhanced new neurogenesis and angiogenesis, and reduced inflammatory responses were keys to conferring the effect of NT3-chitosan on regeneration.


2021 ◽  
Author(s):  
Bradford Hall ◽  
Emma Macdonald ◽  
Margaret Cassidy ◽  
Sijung Yun ◽  
Matthew Sapio ◽  
...  

Pathological sensations caused by peripheral painful neuropathy occurring in Type 2 diabetes mellitus (T2DM) are often described as sharp and burning and are commonly spontaneous in origin. Proposed etiologies implicate dysfunction of nociceptive sensory neurons in dorsal root ganglia (DRG) induced by generation of reactive oxygen species, microvascular defects, and ongoing axonal degeneration and regeneration. To investigate the molecular mechanisms contributing to diabetic pain, DRGs were acquired postmortem from patients who had been experiencing painful diabetic peripheral neuropathy (DPN) and subjected to transcriptome analyses to identify genes contributing to pathological processes and neuropathic pain. DPN occurs in distal extremities resulting in the characteristic glove and stocking pattern. Accordingly, the L4 and L5 DRGs, which contain the perikarya of primary afferent neurons innervating the foot, were analyzed from five DPN patients and compared with seven controls. Transcriptome analyses identified 844 differentially expressed genes. We observed increases in levels of inflammation-associated genes from macrophages in DPN patients that may contribute to increased pain hypersensitivity and, conversely, there were frequent decreases in neuronally-related genes. The elevated inflammatory gene profile and the accompanying downregulation of multiple neuronal genes provide new insights into intraganglionic pathology and mechanisms causing neuropathic pain in DPN patients with T2DM.


Author(s):  
Rui-Meng Yang ◽  
Ming Zhan ◽  
Qin-Yi Zhou ◽  
Xiao-Ping Ye ◽  
Feng-Yao Wu ◽  
...  

Abstract Purpose Congenital hypothyroidism (CH) is a common congenital endocrine disorder in humans. CH-related diseases such as athyreosis, thyroid ectopy, and hypoplasia are primarily caused by dysgenic thyroid development. However, the underlying molecular mechanisms remain unknown. Methods To identify novel CH candidate genes, 192 CH patients were enrolled, and target sequencing of 21 known CH-related genes was performed. The remaining 98 CH patients carrying no known genes were subjected to exome sequencing (ES). The functions of the identified variants were confirmed using thyroid epithelial cells in vitro and in zebrafish model organisms in vivo. Results Four pathogenic GBP1 variations from three patients were identified. In zebrafish embryos, gbp1 knockdown caused defective thyroid primordium morphogenesis and hypothyroidism. The thyroid cells were stuck together and failed to dissociate from each other to form individual follicles in gbp1-deficient embryos. Furthermore, defects were restored with wild-type human GBP1 (hGBP1) messenger RNA (mRNA) except for mutated hGBP1 (p.H150Y, p.L187P) overexpression. GBP1 promoted β-catenin translocation into the cytosol and suppressed the formation of cellular adhesion complexes. Suppression of cell–cell adhesion restored the thyroid primordium growth defect observed in gbp1-deficient zebrafish embryos. Conclusion This study provides further understanding regarding thyroid development and shows that defective cellular remodeling could cause congenital hypothyroidism.


2020 ◽  
Author(s):  
Benoit Haerlingen ◽  
Robert Opitz ◽  
Isabelle Vandernoot ◽  
Angelo Molinaro ◽  
Meghna Shankar ◽  
...  

SummaryThe thyroid plays an essential role in homeostasis and development, but the extrinsic regulation of its embryonic development remains poorly understood. Recently, we have identified the FGF and BMP pathways to be crucial for thyroid specification and have confirmed the hypothesis that the cardiac mesoderm provides the FGF and BMP ligands to regulate this process. However, it is not clear how these ligands control thyroid specification. To study the molecular mechanisms underlying early thyroid development, we combined a pharmacological approach in zebrafish embryos with genetic models, to modulate the activity of the FGF and BMP pathways at different embryonic stages. We first characterized the expression of the transcription factors pax2a and nkx2.4b - the two main early thyroid markers - in the anterior foregut endoderm and observed that pax2a was expressed from 18 hours post fertilization (hpf) and marked a large endodermal cell population while nkx2.4b was expressed from 24 hpf and marked only a subset of the pax2a-positive endodermal cells. Interestingly, the activity profiles of FGF and BMP coincided with the detection of pax2a and nkx2.4b expression, respectively. Brief modulations of the FGF and/or BMP pathways support the hypothesis that the FGF pathway regulates the expression of pax2a and the BMP pathway regulates the expression of nkx2.4b. Furthermore, inhibition of the BMP pathway during early segmentation has dramatic effects on thyroid specification, probably via the FGF pathway. Together with our previous observations, we propose here, an updated model of early thyroid development in which the foregut endoderm receives several synchronized waves of FGF and BMP signals from the cardiac mesoderm, which result in sequential activation of pax2a and nkx2.4b gene expression and subsequent thyroid specification.


2019 ◽  
Author(s):  
Benoit Haerlingen ◽  
Robert Opitz ◽  
Isabelle Vandernoot ◽  
Achim Trubiroha ◽  
Pierre Gillotay ◽  
...  

AbstractBackgroundDefects in embryonic development of the thyroid gland are a major cause for congenital hypothyroidism in human newborns but the underlying molecular mechanisms are still poorly understood. Organ development relies on a tightly regulated interplay between extrinsic signaling cues and cell intrinsic factors. At present, however, there is limited knowledge about the specific extrinsic signaling cues that regulate foregut endoderm patterning, thyroid cell specification and subsequent morphogenetic processes in thyroid development.MethodsTo begin to address this problem in a systematic way, we used zebrafish embryos to perform a series of in vivo phenotype-driven chemical genetic screens to identify signaling cues regulating early thyroid development. For this purpose, we treated zebrafish embryos during different developmental periods with a panel of small molecule compounds known to manipulate the activity of major signaling pathways and scored phenotypic deviations in thyroid, endoderm and cardiovascular development using whole mount in situ hybridization and transgenic fluorescent reporter models.ResultsSystematic assessment of drugged embryos recovered a range of thyroid phenotypes including expansion, reduction or lack of the early thyroid anlage, defective thyroid budding as well as hypoplastic, enlarged or overtly disorganized presentation of the thyroid primordium after budding. Our pharmacological screening identified BMP and FGF signaling as key factors for thyroid specification and early thyroid organogenesis, highlight the importance of low Wnt activities during early development for thyroid specification and implicate drug-induced cardiac and vascular anomalies as likely indirect mechanisms causing various forms of thyroid dysgenesis.ConclusionsBy integrating the outcome of our screening efforts with previously available information from other model organisms including Xenopus, chicken and mouse, we conclude that signaling cues regulating thyroid development appear broadly conserved across vertebrates. We therefore expect that observations made in zebrafish can inform mammalian models of thyroid organogenesis to further our understanding of the molecular mechanisms of congenital thyroid diseases.


Sign in / Sign up

Export Citation Format

Share Document