Experimental Investigation of Soft Soil Stabilization Using Copper Slag-Based Geopolymer

2022 ◽  
Author(s):  
Reza Tarinejad ◽  
Farshad Moharami ◽  
Mohammad Ali Fadaei ◽  
Mehdi Sanaie ◽  
Hadi Safikhanlou
2018 ◽  
Vol 162 ◽  
pp. 01020 ◽  
Author(s):  
Nahla Salim ◽  
Kawther Al-Soudany ◽  
Nora Jajjawi

All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight) of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.


2021 ◽  
Vol 1000 (1000) ◽  
Author(s):  
Soewignjo Agus Nugroho ◽  
Gunawan Wibisono ◽  
Andarsin Ongko ◽  
Avrilly Zesthree Mauliza

Clay is a cohesive and very soft soil if it has high water content. To overcome this problem, clay soils with high plasticity need to be stabilized. The method of soil stabilization with lime is an alternative effort to improve soil that does not meet the standards. Lime reacts with groundwater so that it changes the property of the soil, reducing the stickiness and softness of the soil. Lime also functions to solidify (stabilize) and stabilize (stabilize) soil in the form of fine powder consisting of metals and inorganic mineral composition. This study aims to determine the effect of clay soils when carried out stabilization by using a limestone additive which varies in levels of mixture. The results showed that lime effective for the stabilization high plasticity and expansive clay by increasing the compressive strength value of UCS with lime content of 10% under curing conditions in 28 days and unsoaked by 319%, the liquid limit value reduced by 6% and the plastic limit value increased by 46%.


Author(s):  
M. V. Sokolov ◽  
S. M. Prostov ◽  
O. V. Gerasimov

Purpose: Prediction of geomechanical state of soft-soil foundation of buildings before and after compaction, reinforcement or stabilization. Calculation of parameters of pressure injec-tion while stabilizing the soft man-made soil foundation, development of recommendations for parameter adjustment of pressure injection.Methods: Numerical methods and computer mod-eling of the soil foundation using the finite element method for studying its geomechanical state of a mining building with regard to heterogeneities of the local geological structure and changes in the physical and mechanical properties of soils.Research findings: The obtained results are based on engineering and geological surveys of the soil foundation of the mining building composed of man-made bulk soils. The stress-strain state of the soil foundation is simulated. As a result of injection compaction the geomechanical state of the soil mass chang-es.Practical implications: Recommendations are given for the parameter adjustment of the injection method. It is shown that the pressure injection method is undoubtedly effective for the soil stabilization for buildings.  


2018 ◽  
Vol 34 ◽  
pp. 01012 ◽  
Author(s):  
Mohammed Ali Mohammed Al-Bared ◽  
Aminaton Marto ◽  
Indra Sati Hamonangan Harahap ◽  
Fauziah Kasim

Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3018 ◽  
Author(s):  
Mirjana Vukićević ◽  
Miloš Marjanović ◽  
Veljko Pujević ◽  
Sanja Jocković

Major infrastructure projects require significant amount of natural materials, often followed by the soft soil stabilization using hydraulic binders. This paper presents the results of a laboratory study of alternative waste materials (fly ash and slag) that can be used for earthworks. Results of high plasticity clay stabilization using fly ash from Serbian power plants are presented in the first part. In the second part of the paper, engineering properties of ash and ash-slag mixtures are discussed with the emphasis on the application in road subgrade and embankment construction. Physical and mechanical properties were determined via following laboratory tests: Specific gravity, grain size distribution, the moisture–density relationship (Proctor compaction test), unconfined compressive strength (UCS), oedometer and swell tests, direct shear and the California bearing ratio (CBR). The results indicate the positive effects of the clay stabilization using fly ash, in terms of increasing strength and stiffness and reducing expansivity. Fly ashes and ash-slag mixtures have also comparable mechanical properties with sands, which in combination with multiple other benefits (lower energy consumption and CO2 emission, saving of natural materials and smaller waste landfill areas), make them suitable fill materials for embankments, especially considering the necessity for sustainable development.


2021 ◽  
Vol 7 (1) ◽  
pp. 40-48
Author(s):  
Noor Dhani ◽  
Ahmad Gasruddin ◽  
Hartini Hartini ◽  
La Baride

Soft soil was one of the most widely encountered problems in construction, especially for archipelago countries which most of its area was lowland with a high deposit of soft soil. To overcome this problem, soil stabilization was one of the most widely used as a solution. Soil stabilization in general uses chemical substances that are classified as pozzolan material. Pozzolan material uses its capability to strengthen the cohesion of soil grains. Mostly, pozzolan material consists of silica. Overboulder asbuton and zeolite were examples of natural pozzolan material in Indonesia. Both materials have a high silica content. Thus, the author interested to figure out the mechanical behavior of these two substances as a soil stabilizer. This research was a correlating study to the previous paper with the same author which discusses the overboulder asbuton as a soil stabilizer. Overboulder added to the mix is determined as 15%, with varied zeolite percentages applied to examine the differences. The UCT was conducted according to ASTM D-2166 as a parameter. As the standard remolding method, a standard proctor test was conducted to determine the optimum moisture content and the maximum density of each mix. While the UCT specimens were tested at the certain curing time for each composition. The curing time applied was 0, 7, 14, and 28 days. By this curing period, the effective pozzolanic reaction that occurs for each composition could be determined. The result shows that zeolite addition to overboulder asbuton could increase the soil density and increase its compressive strength. It is indicated that overboulder asbuton and zeolite mix could be a proper alternative as a soil stabilizer. Doi: 10.28991/cej-2021-03091635 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document