scholarly journals PREDICTION OF GEOMECHANICAL STATE OF STABILIZED SOIL FOUNDATION OF MINE ENGINEERING BUILDING

Author(s):  
M. V. Sokolov ◽  
S. M. Prostov ◽  
O. V. Gerasimov

Purpose: Prediction of geomechanical state of soft-soil foundation of buildings before and after compaction, reinforcement or stabilization. Calculation of parameters of pressure injec-tion while stabilizing the soft man-made soil foundation, development of recommendations for parameter adjustment of pressure injection.Methods: Numerical methods and computer mod-eling of the soil foundation using the finite element method for studying its geomechanical state of a mining building with regard to heterogeneities of the local geological structure and changes in the physical and mechanical properties of soils.Research findings: The obtained results are based on engineering and geological surveys of the soil foundation of the mining building composed of man-made bulk soils. The stress-strain state of the soil foundation is simulated. As a result of injection compaction the geomechanical state of the soil mass chang-es.Practical implications: Recommendations are given for the parameter adjustment of the injection method. It is shown that the pressure injection method is undoubtedly effective for the soil stabilization for buildings.  

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3018 ◽  
Author(s):  
Mirjana Vukićević ◽  
Miloš Marjanović ◽  
Veljko Pujević ◽  
Sanja Jocković

Major infrastructure projects require significant amount of natural materials, often followed by the soft soil stabilization using hydraulic binders. This paper presents the results of a laboratory study of alternative waste materials (fly ash and slag) that can be used for earthworks. Results of high plasticity clay stabilization using fly ash from Serbian power plants are presented in the first part. In the second part of the paper, engineering properties of ash and ash-slag mixtures are discussed with the emphasis on the application in road subgrade and embankment construction. Physical and mechanical properties were determined via following laboratory tests: Specific gravity, grain size distribution, the moisture–density relationship (Proctor compaction test), unconfined compressive strength (UCS), oedometer and swell tests, direct shear and the California bearing ratio (CBR). The results indicate the positive effects of the clay stabilization using fly ash, in terms of increasing strength and stiffness and reducing expansivity. Fly ashes and ash-slag mixtures have also comparable mechanical properties with sands, which in combination with multiple other benefits (lower energy consumption and CO2 emission, saving of natural materials and smaller waste landfill areas), make them suitable fill materials for embankments, especially considering the necessity for sustainable development.


2012 ◽  
Vol 248 ◽  
pp. 292-297 ◽  
Author(s):  
Ahmad Rifa’i ◽  
Noriyuki Yasufuku ◽  
Kiyoshi Omine

Volcanic ash becomes environmental important issues as waste material if it is not effectively reduced or reused. In engineering practice, utilization of volcanic ash as substitution material is limited. Indonesia has a large road on soft soil and volcanic ash. The objectives of this paper are focused to study the characterization, classification and utilization of volcanic ash as soil stabilization material which give benefit in engineering practice and also be environmental friendly material. Engineering properties, mineral composition and soil mixture characteristics involve physical and mechanical properties are discussed. Result shows that the effect of addition of volcanic ash after curing time 14 days can improve the engineering properties of soft soil, decrease liquid limit, change curve of grain size distribution, increase bearing capacity, and decrease swelling potential. The soil-volcanic ash mixture with 35% of volcanic ash and 5% of lime is obtained as optimum mixture design. This result is still early stage and need further study.


2011 ◽  
Vol 243-249 ◽  
pp. 2864-2868
Author(s):  
Yue Dong Wu ◽  
Shang Chuan Yang ◽  
Han Long Liu

Stress state of soft soil foundation under vacuum preloading is completely different from its counterpart under surcharge preloading, and the method of calculating the final settlement of soil mass by means of surcharge preloading (positive pressure) is unreasonable in present design. According to a case of soft foundation stabilized with vacuum preloading and through consolidated-undrained triaxial (CU) test on the specimens sampled in situ, the stress paths under different confining pressure are obtained. The settlement of soft foundation treated with vacuum preloading is calculated by strain isoline method. Compared with the practically measured field data, the errors are analyzed and discussed.


2013 ◽  
Vol 740 ◽  
pp. 655-658
Author(s):  
Huan Sheng Mu ◽  
Ling Gao

Through the practice of tamped cement soil pile in treatment of soft soil foundation in Guan to Shenzhou section of Daqing-Guangzhou Expressway, the author expounds the action mechanism of rammed soil cement pile, composite foundation design points and calculation method of bearing capacity characteristic value.


2012 ◽  
Vol 594-597 ◽  
pp. 527-531
Author(s):  
Wan Qing Zhou ◽  
Shun Pei Ouyang

Based on the experimental study of rotary filling piles with large diameter subjected to axial load in deep soft soil, the bearing capacity behavior and load transfer mechanism were discussed. Results show that in deep soft soil foundation, the super–long piles behave as end-bearing frictional piles. The exertion of the shaft resistance is not synchronized. The upper layer of soil is exerted prior to the lower part of soil. Meanwhile, the exertion of shaft resistance is prior to the tip resistance. For the different soil and the different depth of the same layer of soil, shaft resistance is different.


2013 ◽  
Vol 859 ◽  
pp. 222-227
Author(s):  
Hong Jun Liu ◽  
Jin Hua Tan ◽  
Xue Wen Su ◽  
Hao Wu

Two typical monitoring sections are selected for obtaining the change law of the surface subsidence and the settlement after construction of soft soil foundations, and determining the reasonable unloading time. The research results show that the surface settlement rate is large during the filling stage, the rate decreases after the loading and gradually stabilized. The embankment midline settlement is larger than the settlement of the road shoulder which is concluded from the fact that the subsidence of the middle settlement plate is larger than those of the left and right plate. The surface subsidence rate is less than 5mm per month during the two month before unloading according to the data in the tables. The settlement after construction presumed from the middle plate is more significantly larger than that of left and right sides, hence, as the unloading basis of preloading drainage method in soft soil foundation treatment the settlement after construction which is calculated from the midline monitoring data of the road is appropriate. After 6 months the calculated post-construction settlements of the two sections are in the scope of the design requirement since they decrease with preloading time. The reliable basis is provided for the future design and construction of soft foundation in this area through the research results.


Sign in / Sign up

Export Citation Format

Share Document