scholarly journals Geotechnical properties of reinforced clayey soil using nylons carry’s bags by products

2018 ◽  
Vol 162 ◽  
pp. 01020 ◽  
Author(s):  
Nahla Salim ◽  
Kawther Al-Soudany ◽  
Nora Jajjawi

All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight) of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.

Soil Stabilization is one of the modern techniques for modification of soil which are using in our daily life in construction. Due to increase in population land is also getting scarce so we need to build in the available area. So this technique we use is called Soil stabilization or modification of soil. As we know that some of the soils are not useful for construction. As a result while constructing pavements like national highways (NH) we should definitely build the pavement on soils like black cotton soil by improving its strength because the original nature of the soil will have poor bearing capacity and less strength. So by adding admixtures from Industrial wastes such as Ground granulated blast furnace slag(GGBS) which is the waste of iron ore i.e., in powder form and Lime which will increase the bearing strength of the soil, So that it will also increase the pavement design over long period of time which is the ultimate goal for the design of the pavement or any other construction purpose. So by adding these admixture using the industrial waste which is available in a low cost so that we can easily improve the strength of the soil because of the availability of admixtures in economy. After adding the admixtures Soil should be tested by some basic tests of U.C.C (Unconfined Compressive Strength) and also California bearing test (CBR) and also some basic tests like MDD (Maximum Dry Density) & OMC (Optimum Moisture Content), Plasticity index and liquid limit etc.., should be carried out in order to test the improved strength of the soil.


2021 ◽  
Vol 42 (3) ◽  
Author(s):  
Sara Mansouri ◽  
Mehran Nasiri ◽  
Amir Modarres

Many pozzolans are waste products from industrial processes. Every year a huge amount of coal waste is gathered from the coal washing plant in the Hyrcanian forests of Iran. These materials can be used for soil stabilization in construction and maintenance projects of forest roads. This paper aims to (a) investigate the role of coal waste (CW) as a soil stabilizer and (b) determine the changes in soil specification regarding the environmental pollution in different combinations of materials (soil, lime (4 and 6%) and CW (3, 6, 9 and 12%)). For this purpose, different technical and environmental analysis and laboratory tests were performed. Technical tests showed that the soil liquid limit and maximum dry density decreased with an increase in lime and CW contents. Addition of CW could increase the soil CBR, UCS and OMC. According to XRD test, the addition of CW and lime can increase the size of crystals in stabilized soil samples. Environmental analysis showed that the use of stabilizer significantly reduced the concentration of heavy metals such as Cd, Cr and Pb. Also, all of the metal concentrations leached from samples satisfied the required criteria, but the addition of lime and CW increased the concentration of N, P, and K. These changes can increase the invasive species consistent with calcareous soil conditions along the roads. According to the results, the combination of coal waste and lime can be one of the best methods for in situ remediation. It would, however, be better to use a minimum amount of stabilizer in pavement layers of access roads due to environmental sensitivity.


2018 ◽  
Vol 34 ◽  
pp. 01012 ◽  
Author(s):  
Mohammed Ali Mohammed Al-Bared ◽  
Aminaton Marto ◽  
Indra Sati Hamonangan Harahap ◽  
Fauziah Kasim

Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.


2019 ◽  
Vol 969 ◽  
pp. 327-334
Author(s):  
C. Jairaj ◽  
M.T. Prathap Kumar ◽  
H. Muralidhara

This BC Soil are expansive in nature and are problematic because of low shear strength and high compressibility. Review of literatures have proven that addition of lime imparts high strength with a corresponding reduction in swell of BC soils. In addition, Bio-enzymes have also been found to play a key role as activators in improving the characteristics of clayey soils such as BC soil. Development and use of non-traditional ground improvement techniques such as bio-enzymes in combination with lime for soil stabilization helps to reduce the cost and the detrimental effects on the soil environment. In the present study lime and bio-enzymes were used as soil stabilizing agents. Compaction test results on BC soil admixed with different percent of lime indicated that 3% addition lime gives higher maximum dry density of 17kN/m3 with OMC of 21% compare to other addition of lime percentages. Keeping 3% of lime as optimum lime content(OLC), BC Soil was admixed with different dosages of Bio-enzymes 25ml/m3, 50ml/m3, 100 ml/m3,150ml/m3, and 200ml/m3 along with OLC was tested for compaction and unconfined compressive strength(UCC). Further UCC test was carried out for different curing period of 0, 7, 15, 30, and 60 Days to analyse the long term effect of BC soil admixed with bio-enzymes with and without lime content. Morphological and chemical analysis was done by using XRD and SEM analysis, from all the test results it was found that 3%OLC + 75ml/m3 of bio-enzymes for 7 day of curing gives higher UCC of 450 kPa. From the SEM it was found that better bond between particles found to develop in bio-enzyme+ lime admixed BC soil in comparison with lime alone admixed BC soil. XRD studies indicated morphological changes in crystallinity and structure of stabilized BC soil in comparison to BC soil alone.


2021 ◽  
Vol 6 (2) ◽  
pp. 044-050
Author(s):  
Tsion Mindaye ◽  
Emer Tucay Quezon ◽  
Temesgen Ayna

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


Author(s):  
Prateek Malik ◽  
Sudipta K Mishra

Soft soil having a low bearing capacity is found in many parts of the world and construction on soft soil is a challenge. To overcome the situation, the soil needs to be stabilized with some external material like geosynthetic, fly ash and rice husk. Geosynthetics materials are tremendous materials used to solve many civil engineering problems. Fly ash is a byproduct produced by burning of coal and is available in various thermal power plant as a waste material. Disposal of fly ash is also a problem but in one area where it can be used is soil stabilization. A comprehensive review of published literature on the use of geosynthetic and fly ash to stabilize and enhance the strength of soil was carried out. The effect of using geosynthetic material and fly ash was investigated on the properties of soil like Optimum Moisture Content, Maximum Dry Density, California bearing ratio, unconfined compressive strength and compaction behavior of the soft soil.


2021 ◽  
Vol 7 (11) ◽  
pp. 1947-1963
Author(s):  
Sudip Basack ◽  
Ghritartha Goswami ◽  
Hadi Khabbaz ◽  
Moses Karakouzian ◽  
Parinita Baruah ◽  
...  

Soft ground improvement to provide stable foundations for infrastructure is national priority for most countries. Weak soil may initiate instability to foundations reducing their lifespan, which necessitates the adoption of a suitable soil stabilization method. Amongst various soil stabilization techniques, using appropriate admixtures is quite popular. The present study aims to investigate the suitability of bagasse ash and stone dust as the admixtures for stabilizing soft clay, in terms of compaction and penetration characteristics. The studies were conducted by means of a series of laboratory experimentations with standard Proctor compaction and CBR tests. From the test results it was observed that adding bagasse ash and stone dust significantly upgraded the compaction and penetration properties, specifically the values of optimum moisture content, maximum dry density and CBR. Comparison of test results with available data on similar experiments conducted by other researchers were also performed. Lastly, a study on the cost effectiveness for transport embankment construction with the treated soils, based on local site conditions in the study area of Assam, India, was carried out. The results are analyzed and interpreted, and the relevant conclusions are drawn therefrom. The limitations and recommendations for future research are also included. Doi: 10.28991/cej-2021-03091771 Full Text: PDF


Soil stabilization is the process which involves enhancing the physical properties of the soil in order to improve its strength, durability etc. by blending or mixing with additives. The different types of method used for soil stabilization are: Soil stabilization with cement, Soil stabilization with lime, Soil stabilization using bitumen, Chemical stabilization and a new emerging technology of stabilization by Geo textiles and Geo synthetic fibres. In this study, we are making use of Jute and Coir fibre as geo synthetic material for stabilization of soil. With the introduction of Jute and Coir fibres to the soil the CBR values will improve and thickness of pavement layer also gets reduced. It also reduces the intensity of stress on subgrade. Jute and Coir fibres are such a geo synthetic material which is easily available, eco friendly and also cost-effective. With the application of soil stabilization method in construction the overall cost gets reduced when compared to the ordinary method of construction. To determine the Liquid limit using Casagrande Method, Plastic limit by rolling the sample to 3mm diameter thread, Optimum Moisture Content and Maximum Dry Density using Standard Proctor Test, Unconfined compression test and also California Bearing Ratio by conducting CBR test.


2021 ◽  
Author(s):  
Emer Tucay Quezon ◽  
Tsion Mindaye

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hassan A. M. Abdelkader ◽  
Mohamed M. A. Hussein ◽  
Haiwang Ye

The marble process industry from Shaq Al-Thouban region, which is located in East Cairo, Egypt, produces a huge amount of marble wastes every day during the cutting and processing stages. Up to now, most of these wastes are dumping on open land which creates serious environmental problems. The amount of waste marble from the processing stage is about 20 to 25% of the total processed stone. Egypt also suffers from the problem of expansive soil that occupies a large area of its lands, especially in the new cities that are built on these lands. The primary purpose of this study is to use this waste material in the soil stabilization in point of view utilization of this waste as local low-cost materials and elimination of their negative environmental impacts. The waste marble dust was mixed with expansive soil samples with various percentages of 5%, 10%, 15%, 20%, and 25% by dry weight of soil. Different tests including Atterberg’s limits, standard Proctor compaction, unconfined compressive strength (UCS), California bearing ratio (CBR), swelling percentage, linear shrinkage (LS) tests, and XRF and XRD analyses were conducted for natural and marble dust stabilized soils. The soil mixtures used for UCS, CBR, and swell tests were compacted at the optimum moisture content (OMC) and maximum dry density (MDD) using the standard Proctor compaction method and cured for 7 days. The results of the tests showed that there are significant effects in enhancing the properties of expansive soils. Also, the results showed that as the percentage of the marble dust increases the plasticity index, the swelling potential of the expansive clayey soil decreases. Furthermore, the optimum moisture content decreases, and the maximum dry density increases. Also, UCS, CBR, and the calcite content of the soil mixtures increase with the increase in marble dust content.


Sign in / Sign up

Export Citation Format

Share Document