Observations of Heavy Short-Term Rainfall Hotspots Associated with Warm-Sector Episodes Over Coastal South China

2022 ◽  
Author(s):  
Zhilin Zeng
Keyword(s):  
Author(s):  
Shui-Xin Zhong ◽  
Wei-Guang Meng ◽  
Fu-You Tian

AbstractThe contributions of divergent and rotational wind components to the kinetic energy budget during a record-breaking rainstorm on 7 May 2017 over South China are examined. This warm-sector extreme precipitation caused historical maximum of 382.6 mm accumulated rainfall in 3 h over the Pearl River Delta (PRD) regions in South China. Results show that there was a high low-level southerly wind-speed tongue stretching into the PRD regions from the northeast of the South China Sea (SCS) during this extreme precipitation. The velocity potential exhibited a low-value center as well as a low-level divergence-center over the SCS. The rotational components of the kinetic energy (KR)-related terms were the main contribution-terms of the kinetic energy budget. The main contribution-terms of KR and the divergent component of kinetic energy (KD) were the barotropical and baroclinic processes-related terms due to cross-contour flow and the vertical flux divergence.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Tao Chen ◽  
Da-Lin Zhang

In view of the limited predictability of heavy rainfall (HR) events and the limited understanding of the physical mechanisms governing the initiation and organization of the associated mesoscale convective systems (MCSs), a composite analysis of 58 HR events over the warm sector (i.e., far ahead of the surface cold front), referred to as WSHR events, over South China during the months of April to June 2008~2014 is performed in terms of precipitation, large-scale circulations, pre-storm environmental conditions, and MCS types. Results show that the large-scale circulations of the WSHR events can be categorized into pre-frontal, southwesterly warm and moist ascending airflow, and low-level vortex types, with higher frequency occurrences of the former two types. Their pre-storm environments are characterized by a deep moist layer with >50 mm column-integrated precipitable water, high convective available potential energy with the equivalent potential temperature of ≥340 K at 850 hPa, weak vertical wind shear below 400 hPa, and a low-level jet near 925 hPa with weak warm advection, based on atmospheric parameter composite. Three classes of the corresponding MCSs, exhibiting peak convective activity in the afternoon and the early morning hours, can be identified as linear-shaped, a leading convective line adjoined with trailing stratiform rainfall, and comma-shaped, respectively. It is found that many linear-shaped MCSs in coastal regions are triggered by local topography, enhanced by sea breezes, whereas the latter two classes of MCSs experience isentropic lifting in the southwesterly warm and moist flows. They all develop in large-scale environments with favorable quasi-geostrophic forcing, albeit weak. Conceptual models are finally developed to facilitate our understanding and prediction of the WSHR events over South China.


2020 ◽  
Vol 235 ◽  
pp. 104693 ◽  
Author(s):  
Naigeng Wu ◽  
Xi Ding ◽  
Zhiping Wen ◽  
Guixing Chen ◽  
Zhiyong Meng ◽  
...  

Asian Survey ◽  
2012 ◽  
Vol 52 (6) ◽  
pp. 1019-1042 ◽  
Author(s):  
David Scott

Abstract In the South China Sea dispute, some Track-2 settings, along with Track-1 efforts by ASEAN and China, have facilitated some conflict “management.” But they have not brought about conflict “resolution” of the basic sovereignty and control issues. Conflict “irresolution” has ensued instead. Short-term balancing may perhaps generate long-term socialization convergence.


Sign in / Sign up

Export Citation Format

Share Document