Multi-objective Optimization Reveals Time- and Dose-Dependent Inflammatory Cytokine-Mediated Regulation of Human Stem Cell Derived T-cell Development

immuneACCESS ◽  
2021 ◽  
Author(s):  
JM Edgar ◽  
YS Michaels ◽  
PW Zandstra
Author(s):  
Rafael Gras-Pena ◽  
Nichole M. Danzl ◽  
Mohsen Khosravi-Maharlooei ◽  
Sean R. Campbell ◽  
Amanda E. Ruiz ◽  
...  

2016 ◽  
Author(s):  
Sjoukje J.C. van der Stegen ◽  
Maria Themeli ◽  
Justin Eyquem ◽  
Jorge Mansilla-Soto ◽  
Michel Sadelain

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3748-3748
Author(s):  
Bidisha Chanda ◽  
Kiyoko Izawa ◽  
Ratanakanit Harnprasopwat ◽  
Keisuke Takahashi ◽  
Seiichiro Kobayashi ◽  
...  

Abstract Abstract 3748 Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder generally believed to originate from a hematopoietic stem cell carrying the BCR-ABL fusion gene, which generally encodes 210kD and 190kD constitutively active tyrosine kinases termed as p210 and p190, respectively. In spite of the putative stem cell origin and the competence for differentiation toward mature B cells, there is a longstanding consensus that CML never involves the T cell lineage at least in chronic phase. To gain insight into this apparent conflict, we used in vitro T cell differentiation model from murine pluripotent stem cells (PSCs) as well as hematopoietic stem cells (HSCs). C57BL/6 MEFs were reprogrammed using a polycistronic lentiviral Tet-On vector encoding human Oct4, Sox2 and Klf4, which were tandemly linked via porcine teschovirus-1 2A peptides, together with another lentiviral vector expressing rtTA driven by the EF-1a promoter. Almost all the vector sequences including the transgenes were deleted by adenovirus-mediated transduction of Crerecombinase after derivation of iPSCs, and only remnant 291-bp LTRs containing a single loxP site remained in the genome. A clone of MEF-iPSCs were retrovirally transduced with p190DccER, a ligand-controllable p190-estrogen receptor fusion protein, whose tyrosine kinase activity absolutely depends on 4-hydroxytamoxyfen (4-HT).For T cell lineage differentiation, p190DccER-MEF-iPSCs were recovered from a feeder-free culture supplemented with LIF and plated onto a subconfluent OP9-DL1 monolayer in the presence of Flt3 ligand and IL7 with or without 0.5 mM 4-HT.After 3 weeks of culture, iPSC-derived blood cells were collected and subjected to FACS analysis for their lineage confirmation. About 70% of lymphocyte-like cells from the 4-HT(-) culture expressed CD3, but only 20% of counterparts from the 4-HT(+)culture expressed CD3, suggesting impaired T cell development by Bcr-Abl. Next, c-Kit+Sca1+Lin− (KSL) bone marrow cells were prepared by FACS from 8-weeks old C57BL/6 mice treated with 5-FU. KSL cells were similarly transduced with p190DccER and were subjected to the OP9-DL1co-culture system with or without 0.5 mM 4-HT.After 2 weeks of culture, 90% of lymphocytes from the 4-HT(-)culture revealed CD3+TCRβ+ phenotype, but only 30% of those were double positive in the presence of 4-HT(+). In addition, 96% of lymphocytes from the 4-HT(-) culture progressed to the DN2 stage with c-Kit−CD44+CD25+phenotype, whereas 40% of those from the 4-HT(+) culture arrested at the DN1 stage showing c-Kit+CD44+CD25−.Since IL7 plays a central role at the stage from DN1 to DN2 of progenitor T cells, Bcr-Abl is suggested to impair T cell development possibly through interfering with the IL7 signal. The precise mechanism underlying impaired T lymphopoiesis by Bcr-Abl is under investigation. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Steven Strubbe ◽  
Tom Taghon

Hematopoietic stem cells (HSCs) reside in distinct sites throughout fetal and adult life and give rise to all cells of the hematopoietic system. Because of their multipotency, HSCs are capable of curing a wide variety of blood disorders through hematopoietic stem cell transplantation (HSCT). However, due to HSC heterogeneity, site-specific ontogeny and current limitations in generating and expanding HSCs in vitro, their broad use in clinical practice remains challenging. To assess HSC multipotency, evaluation of their capacity to generate T lymphocytes has been regarded as a valid read-out. Several in vitro models of T cell development have been established which are able to induce T-lineage differentiation from different hematopoietic precursors, although with variable efficiency. Here, we review the potential of human HSCs from various sources to generate T-lineage cells using these different models in order to address the use of both HSCs and T cell precursors in the clinic.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3156-3156
Author(s):  
Hongfang Wang ◽  
L. Jeanne Pierce ◽  
Gerald J. Spangrude

Abstract Notch signaling plays a critical role in T lineage commitment during lymphoid differentiation. However, Notch signaling alone is not sufficient to support T cell development through the CD4/CD8 double positive (DP) stage in vitro. We here report distinct effects of several cytokines on T cell differentiation in the OP9-DL1 cell culture model. Our studies show that Flt3 ligand enhances the proliferation of progenitors but has no obvious effect on differentiation. In contrast, stem cell factor (SCF) favors the proliferation of CD4/CD8 double negative (DN) lymphoid progenitors and inhibits differentiation to the DP stage in a dose-dependent manner. Differentiation of the NK lineage is promoted under these conditions. Conversely, blocking the function of SCF that is expressed endogenously by OP9-DL1 cells inhibits proliferation of lymphoid progenitors and accelerates T lineage differentiation. IL-7 is necessary for differentiation from the DP to the CD8 single positive (SP) stage, and is also required for γδ T lineage development. We also find a dosage effect of IL-7 during T cell development. OP9 and OP9-DL1 stromal cells produce endogenous levels of IL-7 that are sufficient to support B and DP T cell differentiation. However, the amount of endogenous IL-7 is not sufficient to support T cell differentiation from the DP to the SP stage. Addition of exogenous IL-7 (1–10 ng/ml) to the cultures promotes SP differentiation, while blocking endogenous IL-7 with anti-IL-7 antibody inhibits both B and T cell development. We conclude that activation through the Notch pathway is sufficient to suppress B lineage differentiation and thereby promote T lineage commitment, but is not sufficient to promote the subsequent stages of T cell development. SCF promotes expansion and directs NK lineage differentiation at the expense of T cell development, while IL-7 provides both proliferation as well as T lineage differentiation signals. T cell development from the DN to the DP stage requires a low amount of IL-7, while differentiation from the DP to the SP stage requires a higher level of IL-7. The balance between the effects mediated by these cytokines, along with Notch signaling, plays a critical role in regulating development of the T and NK lineages.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lara K. Abramowitz ◽  
Christelle Harly ◽  
Arundhoti Das ◽  
Avinash Bhandoola ◽  
John A. Hanover

Author(s):  
Xiaona You ◽  
Yun Zhou ◽  
Yuan-I Chang ◽  
Guangyao Kong ◽  
Erik A. Ranheim ◽  
...  

Mammalian GATA2 gene encodes a dual zinc finger transcription factor, which is essential for hematopoietic stem cell (HSC) generation in the aorta, gonad, mesonephros (AGM) region, HSC self-renewal, and specification of progenitor cell fates. Previously, we demonstrated that Gata2 expression in AGM is controlled by its intronic +9.5 enhancer. Gata2 +9.5 deficiency removes the E-box motif and the GATA site and depletes fetal liver HSCs. However, whether this enhancer has essential functions to regulate adult hematopoiesis has not been established. Here, we evaluate Gata2 +9.5 enhancer function in adult hematopoiesis. +9.5+/- bone marrow cells displayed reduced T cell reconstitution in a competitive transplant assay. Donor-derived analysis demonstrated a previously unrecognized function of the +9.5 enhancer in T cell development at the lymphoid-primed multipotent progenitor stage. Moreover, +9.5+/- adult HSCs displayed increased apoptosis and reduced long-term self-renewal capability in comparison with wild-type (WT) HSCs. These phenotypes were more moderate than those of Gata2+/- HSCs. Consistent with the phenotypic characterization, Gata2 expression in +9.5+/- LSKs was moderately higher than that in Gata2+/- LSKs, but lower than that in WT LSKs. Our data suggest that +9.5 deficiency compromises, without completely abrogating, Gata2 expression in adult HSCs.


Sign in / Sign up

Export Citation Format

Share Document