scholarly journals The enigmatic helicase DHX9 and its association with the hallmarks of cancer

2021 ◽  
Vol 7 (2) ◽  
pp. FSO650
Author(s):  
Chloe Gulliver ◽  
Ralf Hoffmann ◽  
George S Baillie

Much interest has been expended lately in characterizing the association between DExH-Box helicase 9 (DHX9) dysregulation and malignant development, however, the enigmatic nature of DHX9 has caused conflict as to whether it regularly functions as an oncogene or tumor suppressor. The impact of DHX9 on malignancy appears to be cell-type specific, dependent upon the availability of binding partners and activation of inter-connected signaling pathways. Realization of DHX9’s pivotal role in the development of several hallmarks of cancer has boosted the enzyme's potential as a cancer biomarker and therapeutic target, opening up novel avenues for exploring DHX9 in precision medicine applications. Our review discusses the ascribed functions of DHX9 in cancer, explores its enigmatic nature and potential as an antineoplastic target.

2021 ◽  
Author(s):  
Moataz Dowaidar

Autophagy is a double-edged sword in cancer, and numerous aspects should be taken into account before deciding on the most effective strategy to target the process. The fact that several clinical studies are now ongoing does not mean that the patient group that may benefit from autophagy-targeting medicines has been identified. Autophagy inhibitors that are more potent and specialized, as well as autophagy indicators, are also desperately required. The fact that these inhibitors only work against tumors that rely on autophagy for survival (RAS mutants) makes it difficult to distinguish them from tumors that continue to develop even when autophagy is absent. Furthermore, mutations such as BRAF have been shown to make tumors more susceptible to autophagy suppression, suggesting that targeting such tumours may be a viable strategy for overcoming their chemotherapy resistance. In the meantime, we are unable to identify if autophagy regulation works in vivo or whether it selectively targets a disease while inflicting injury to other healthy organs and tissues. A cell-type-specific impact appears to be observed with such therapy. As a result, it is just as important to consider the differences between tumors that originate in different organs as it is to consider the signaling pathways that are similar across them. For a therapy or cure to be effective, the proposed intervention must be tailored to the specific needs of each patient.Over the last several years, a growing amount of data has implicated autophagy in a variety of disorders, including cancer. In normal cells, this catabolic process is also required for cell survival and homeostasis. Despite the fact that medications targeting intermediates in the autophagy signaling pathway are being created and evaluated at both the preclinical and clinical levels, given the complicated function of autophagy in cancer, we still have a long way to go in terms of establishing an effective therapeutic approach. This article discusses current tactics for exploiting cancer cells' autophagy dependency, as well as obstacles in the area. We believe that the unanswered concerns raised in this work will stimulate researchers to investigate previously unknown connections between autophagy and other signaling pathways, which might lead to the development of novel, highly specialized autophagy therapies.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Yunlei Yang ◽  
Peter Lee ◽  
Scott M Sternson

N-Methyl-D-aspartate receptors (NMDA-Rs) are ion channels that are important for synaptic plasticity, which is involved in learning and drug addiction. We show enzymatic targeting of an NMDA-R antagonist, MK801, to a molecularly defined neuronal population with the cell-type-selectivity of genetic methods and the temporal control of pharmacology. We find that NMDA-Rs on dopamine neurons are necessary for cocaine-induced synaptic potentiation, demonstrating that cell type-specific pharmacology can be used to dissect signaling pathways within complex brain circuits.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii32-ii32
Author(s):  
Charlotte Eaton ◽  
Paola Bisignano ◽  
David Raleigh

Abstract BACKGROUND Alterations in the NF2 tumor suppressor gene lead to meningiomas and schwannomas, but the tumor suppressor functions of the NF2 gene product, Merlin, are incompletely understood. To address this problem, we performed a structure-function analysis of Merlin by expressing cancer-associated missense single-nucleotide variants (mSNVs) in primary cancer cells for biochemical and cell biology experiments. METHODS All NF2 mSNVs were assembled from cBioPortal and COSMIC, and modelled on the FERM, a-helical, and C-terminal domains of Merlin (PDB 4ZRJ) using comparative structure prediction on the Robetta server and visually inspected using Pymol. mSNV hotspots were defined from sliding windows with at least 10 mutations within 5 residues in either direction. mSNVs from hotspots in meningiomas, schwannomas, or both, were selected for in vitro mechanistic analyses using immunofluorescence and immunoblotting of whole cell, plasma membrane, cytoskeletal, cytoplasmic, nuclear, and chromatin subcellular fractions from M10G meningioma cells and HEI-193 schwannoma cells. RESULTS We identified the following cancer-associated hotspot mSNVs in NF2, which were over-expressed for mechanistic studies: L46R, S156N, W191R, A211D, V219M, R418C and R462K. Endogenous Merlin was detected in all subcellular compartments, but was enriched in the nucleus. L46R and A211D mapped to hydrophobic pockets in the FERM domain, destabilized Merlin, and excluded Merlin from all subcellular compartments except the cytoskeleton. S156N, W191R and V219M also mapped to the FERM domain, but did not affect Merlin stability, and V219M attenuated chromatin localization, suggesting this motif may be involved in binding events that regulate subcellular localization. R418C and R463K mapped to the a-helical domain, but only R418C destabilized Merlin. CONCLUSION Our results suggest that cancer-associated mSNVs inactive the tumor suppressor functions of NF2 by altering the stability, subcellular localization, or binding partners of Merlin. Further work is required to identify and understand the impact of binding partners and subcellular localization on Merlin function.


2018 ◽  
Author(s):  
Meaghan J Jones ◽  
Louie Dinh ◽  
Hamid Reza Razzaghian ◽  
Olivia de Goede ◽  
Julia L MacIsaac ◽  
...  

AbstractBackgroundDNA methylation profiling of peripheral blood leukocytes has many research applications, and characterizing the changes in DNA methylation of specific white blood cell types between newborn and adult could add insight into the maturation of the immune system. As a consequence of developmental changes, DNA methylation profiles derived from adult white blood cells are poor references for prediction of cord blood cell types from DNA methylation data. We thus examined cell-type specific differences in DNA methylation in leukocyte subsets between cord and adult blood, and assessed the impact of these differences on prediction of cell types in cord blood.ResultsThough all cell types showed differences between cord and adult blood, some specific patterns stood out that reflected how the immune system changes after birth. In cord blood, lymphoid cells showed less variability than in adult, potentially demonstrating their naïve status. In fact, cord CD4 and CD8 T cells were so similar that genetic effects on DNA methylation were greater than cell type effects in our analysis, and CD8 T cell frequencies remained difficult to predict, even after optimizing the library used for cord blood composition estimation. Myeloid cells showed fewer changes between cord and adult and also less variability, with monocytes showing the fewest sites of DNA methylation change between cord and adult. Finally, including nucleated red blood cells in the reference library was necessary for accurate cell type predictions in cord blood.ConclusionChanges in DNA methylation with age were highly cell type specific, and those differences paralleled what is known about the maturation of the postnatal immune system.


2021 ◽  
Vol 101 (1) ◽  
pp. 353-415
Author(s):  
Jochen F. Staiger ◽  
Carl C. H. Petersen

The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a ‘barrel’ (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.


2005 ◽  
Vol 19 (12) ◽  
pp. 1637-1645 ◽  
Author(s):  
Rafia S. Al‐Lamki ◽  
Jun Wang ◽  
Peter Vandenabeele ◽  
J. Andrew Bradley ◽  
Sathia Thiru ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 145-145
Author(s):  
Federico Gaiti ◽  
Allegra Hawkins ◽  
Paulina Chamely ◽  
Ariel Swett ◽  
Xiaoguang Dai ◽  
...  

Abstract Splicing factor mutations are recurrent genetic alterations in blood disorders, highlighting the importance of alternative splicing regulation in hematopoiesis. Specifically, mutations in splicing factor 3B subunit 1 (SF3B1) are implicated in the pathogenesis of myelodysplastic syndromes (MDS) and linked to a high-risk of leukemic transformation in clonal hematopoiesis (CH). SF3B1 mutations are associated with aberrant RNA splicing, leading to increased cryptic 3' splice site (ss) usage and MDS with ring sideroblasts phenotype. The study of mutant SF3B1-driven splicing aberrations in humans has been hampered by the inability to distinguish mutant and wildtype single cells in patient samples and the inadequate coverage of short-read sequencing over splice junctions. To overcome these limitations, we developed GoT-Splice by integrating Genotyping of Transcriptomes (GoT; Nam et al. 2019) with Nanopore long-read single-cell transcriptome profiling and CITE-seq (Fig. A). This allowed for the simultaneous single-cell profiling of protein and gene expression, somatic mutation status, and alternative splicing. Our method selectively enriched full-length sequencing reads with the accurate structure, enabling the capture of higher number of junctions per cell and greater coverage uniformity vs. short-read sequencing (10x Genomics; Fig. B, C). We applied GoT-Splice to CD34+ bone marrow progenitor cells from MDS (n = 15,436 cells across 3 patients; VAF: [0.38-0.4]) to study how SF3B1 mutations corrupt human hematopoiesis (Fig. D). High-resolution mapping of SF3B1 mutvs. SF3B1 wt hematopoietic progenitors revealed an increasing fitness advantage of SF3B1 mut cells towards the megakaryocytic-erythroid lineage, resulting in an expansion of SF3B1 muterythroid progenitor (EP) cells (Fig. E, F). Accordingly, SF3B1 mutEP cells displayed higher protein expression of erythroid lineage markers, CD71 and CD36, vs. SF3B1 wt cells (Fig. G). In these SF3B1 mutEP cells, we identified up-regulation of genes involved in regulation of cell cycle and checkpoint controls (e.g., CCNE1, TP53), and mRNA translation (eIFs gene family; Fig. H). Next, while SF3B1 mut cells showed the expected increase of cryptic 3' splicing vs. SF3B1 wt cells (Fig. I), they exhibited distinct cryptic 3' ss usage as a function of hematopoietic progenitor cell identity, displaying stage-specific aberrant splicing during erythroid maturation (Fig. J). In less differentiated EP cells, we observed mis-splicing of genes involved in iron homeostasis, such as the hypoxia-inducible factor HIF1A, and key regulators of erythroid cell growth, such as SEPT2. At later stages, we observed mis-splicing of BAX, a pro-apoptotic member of the Bcl-2 gene family and transcriptional target of p53, and erythroid-specific genes (e.g., PPOX). We further predicted 54% of the aberrantly spliced mRNAs to introduce premature stop codons, promoting RNA degradation through nonsense-mediated decay (NMD). In line with this notion, we observed a significant decrease in expression of NMD-inducing genes in SF3B1 mut vs . SF3B1 wtEP cells (Fig. K). Lastly, splicing factor mutations observed in CH subjects provide an opportunity to interrogate the downstream impact of SF3B1 mutations prior to development of disease. Like MDS, by applying GoT-splice to CD34+ progenitor cells from SF3B1 mut CH subjects (n = 9,007 cells across 2 subjects; VAF: [0.15-0.22]; Fig. L), we revealed increased mutant cell frequency in EP cells (Fig. M) with concomitant increased expression of genes involved in mRNA translation (Fig. N), consistent with SF3B1 mutation causing mis-splicing injury to translational machinery and ineffective erythropoiesis. Notably, CH patients already exhibited cell-type specific cryptic 3' ss usage in SF3B1 mut cells (Fig. O). In summary, we developed a novel multi-omics single-cell toolkit to examine the impact of splicing factor mutations on cellular fitness directly in human samples. With this approach, we showed that, while SF3B1 mutations arise in uncommitted HSCs, their effect on fitness increases with differentiation into committed EPs, in line with the mutant SF3B1-driven dyserythropoiesis phenotype. We revealed that SF3B1 mutations exert cell-type specific mis-splicing that leads to abnormal erythropoiesis. Finally, we demonstrated that the impact of SF3B1 mutations on EP cells begins before disease onset, as observed in CH subjects. Figure 1 Figure 1. Disclosures Dai: Oxford Nanopore Technologies: Current Employment. Beaulaurier: Oxford Nanopore Technologies: Current Employment. Drong: Oxford Nanopore Technologies: Current Employment. Hickey: Oxford Nanopore Technologies: Current Employment. Juul: Oxford Nanopore Technologies: Current Employment. Wiseman: Astex: Research Funding; Novartis: Consultancy; Bristol Myers Squibb: Consultancy; Takeda: Consultancy; StemLine: Consultancy. Harrington: Oxford Nanopore Technologies: Current Employment. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy. Abdel-Wahab: H3B Biomedicine: Consultancy, Research Funding; Foundation Medicine Inc: Consultancy; Merck: Consultancy; Prelude Therapeutics: Consultancy; LOXO Oncology: Consultancy, Research Funding; Lilly: Consultancy; AIChemy: Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Envisagenics Inc.: Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2388-2388
Author(s):  
Sankaranarayanan Kannan ◽  
Patrick A. Zweidler-McKay

Abstract Abstract 2388 Poster Board II-365 The Notch signaling pathway is a critical regulator of cell fate determination and differentiation during development, which is highly cell type specific. Similarly, Notch signaling plays both oncogenic and tumor suppressor roles in a wide variety of malignancies, depending on cell type. In contrast to T cell acute lymphoblastic leukemia (T-ALL) where Notch activation promotes leukemogenesis, induction of Notch signaling in B-ALL leads to growth arrest and apoptosis. The Notch target gene Hairy/Enhancer of Split1 (HES1) is sufficient to reproduce this tumor suppressor phenotype in B-ALL, however the mechanism is not yet known. Here we report the novel finding that HES1 forms distinct complexes in B-ALL versus T-ALL. This suggests that HES1 interacting proteins may contribute to the cell-type specific consequences of Notch/HES1 signaling. During characterization of these complexes, we identified the novel interaction between HES1 and PARP1 through immunoprecipitation and MALDI-TOF protein sequencing. This interaction was dependent on the HES1 bHLH and Orange domains and PARP1 and HES1 co-localize to a genomic HES1 binding site by ChIP. This interaction both inhibits HES1 repressor function and induces PARP1 activation in B-ALL. HES1-induced PARP1 cleavage leads to enhanced poly ADP ribosylation of PARP1, consumption of NAD+, diminished ATP levels, and translocation of the Apoptosis Inducing Factor (AIF) from mitochondria to the nucleus, resulting in apoptosis in B-ALL, but not T-ALL. Importantly the potential therapeutic Notch agonist peptide “DSL” also induces cell-specific growth arrest and apoptosis (A+B), followed by poly-ADP ribosylation of PARP1 (C), and nuclear translocation of AIF in B-ALL but not T-ALL cells (D). These data reveal a novel interaction of HES1 and PARP1 in B-ALL which modulates the function of the HES1 transcriptional complex and signals through PARP1 to induce apoptosis. This novel tumor suppressor mechanism involving a Notch driven, cell-type specific pro-apoptotic pathway may lead to the development of Notch agonist-based cancer therapeutics. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 1258 ◽  
pp. 233-237
Author(s):  
Fumio Suzuki ◽  
Yukimi Akimoto ◽  
Kaori Sasai ◽  
Hirohiko Yajima

Sign in / Sign up

Export Citation Format

Share Document