scholarly journals Automated Segmentation of Leukocytes using Marker-based Watershed Algorithm from Blood Smear Images

Author(s):  
Vipasha Abrol ◽  
Sabrina Dhalla ◽  
Jasleen Saini ◽  
Ajay Mittal ◽  
Sukhwinder Singh ◽  
...  

The aim of this paper is to perform segmentation of white blood cells (WBCs) using blood smear images with the help of image processing techniques. Traditionally, the process of morphological analysis of cells is performed by a medical expert. This process is quite tedious and time consuming. The equipments used to perform the experiments are very costly and might not be available in all hospitals. Further, the whole process is quite lengthy and prone to error easily because of the lack of standard set of procedure. Hence there is a need for innovative and efficient techniques. An automated image segmentation system can make the blood test process much easier and faster. Segmentation of a nucleus image is one of the most critical tasks in a leukemia diagnosis. In this work, we have investigated and implemented image processing algorithms to segment cells. The proposed model detects WBCs and converts cell images from RGB to HSV color space using Otsu thresholding. The resultant image is then processed with the morphological filter because the segmented image contains noise which affects the system performance. Lastly, the Marker-based watershed algorithm is implemented in which specific marker positions are defined. The proposed model is tested on publically available ALL-IDB2 dataset. The system’s performance was overall examined and resulted in 98.99% overall precision for WBC segmentation.

Author(s):  
Asaad Babker ◽  
Vyacheslav Lyashenko

Objective: Our aim is to show the possibility of using different image processing techniques for blood smear analysis. Also our aim is to determine the sequence of image processing techniques to identify megaloblastic anemia cells. Methods: We consider blood smear image. We use a variety of image processing techniques to identify megaloblastic anemia cells. Among these methods, we distinguish the modification of the color space and the use of wavelets. Results: We developed a sequence of image processing techniques for blood smear image analysis and megaloblastic anemia cells identification. As a characteristic feature for megaloblastic anemia cells identification, we consider neutrophil image structure. We also use the morphological methods of image analysis in order to reveal the nuclear lobes in neutrophil structure. Conclusion: We can identify the megaloblastic anemia cells. To do this, we use the following sequence of blood smear image processing: color image modification, change of the image contrast, use of wavelets and morphological analysis of the cell structure. 


Author(s):  
Rajithkumar B. K. ◽  
Shilpa D. R. ◽  
Uma B. V.

Image processing offers medical diagnosis and it overcomes the shortcomings faced by traditional laboratory methods with the help of intelligent algorithms. It is also useful for remote quality control and consultations. As machine learning is stepping into biomedical engineering, there is a huge demand for devices which are intelligent and accurate enough to target the diseases. The platelet count in a blood sample can be done by extrapolating the number of platelets counted in the blood smear. Deep neural nets use multiple layers of filtering and automated feature extraction and detection and can overcome the hurdle of devising complex algorithms to extract features for each type of disease. So, this chapter deals with the usage of deep neural networks for the image classification and platelets count. The method of using deep neural nets has increased the accuracy of detecting the disease and greater efficiency compared to traditional image processing techniques. The method can be further expanded to other forms of diseases which can be detected through blood samples.


2021 ◽  
Vol 20 (4) ◽  
pp. 209-214
Author(s):  
Polaiah Bojja ◽  
N. Merrin Prasanna ◽  
Pamula Raja Kumari ◽  
T. Bhuvanendhiran ◽  
Panuganti Jayanth Kumar

In the cement factories, a rotary kiln is a pyro-processing device that is used to raise the temperature of the materials in a continuous process. Temperature monitoring is an essential process in the rotary kiln to yield high quality clinker and it has been implemented using various image processing techniques. In this paper we are measuring and controlling the temperature of rotational kiln in cement industry to get proper clinker ouput. Burning zone flame images are captured using CCD(Charge Coupled Device) camera and are processed using image processing with PID(Proportion Integration and Derivative) controller and which are programmed on raspberry pi card with the help of python language, also the captured images and attributes are transferred to authorized mobile/pc through Raspberry PI by selecting the IP address of mobile or PC. All the attributes received in the mobile in the form of web page the according to the object following data temperature controlled and object is ceaselessly followed to get the proper clinker output. Picture handling calculation with Open cv, as indicated by the calculation the edge estimation of the camera is settled. The frame value of the camera is set. Conversion from RGB color space to HSV color space is achieved and the reference color threshold value is determined. The range esteem estimated by the camera is contrasted and the reference esteem. In this study temp of rotational kiln is measured effectively using PID controller, this controller continuously control the temperature of revolving kiln by varying the i/p images of burning zone at finally fix one flame which is giving 1400degc.


Author(s):  
Mohammed Al-Momin ◽  
Ammar Almomin

<span lang="EN-US">The conventional method for detecting blood abnormality is time consuming and lacks the high level of accuracy. In this paper a MATLAB based solution has been suggested to tackle the problem of time consumption and accuracy. Three types of blood abnormality have been covered here, namely, anemia which is characterized by low count of red blood cells (RBCs), Leukemia which is depicted by increasing the number of white blood cells (WBCs), and sickle cell blood disorder which is caused by a deformation in the shape of red cells. The algorithm has been tested on different images of blood smears and noticed to give an acceptable level of accuracy. Image processing techniques has been used here to detect the different types of blood constituents. Unlike many other researches, this research includes the blood sickling disorder which is epidemic in certain regions of the world, and offers a more accuracy than other algorithms through the use of detaching overlapped cells strategy.</span>


2020 ◽  
Vol 1 (6) ◽  
pp. 1-6
Author(s):  
Vyacheslav Lyashenko ◽  
Tetiana Sinelnikova ◽  
Oleksandr Zeleniy ◽  
Asaad Mohammed Ahmed Babker

The process of medical diagnosis is an important stage in the study of human health. One of the directions of such diagnostics is the analysis of images of blood smears. In doing so, it is important to use different methods and analysis tools for image processing. It is also important to consider the specificity of blood smear imaging. The paper discusses various methods for analyzing blood smear images. The features of the application of the image processing technique for the analysis of a blood smear are highlighted. The results of processing blood smear images are presented.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3528 ◽  
Author(s):  
Min ◽  
Kim ◽  
Song ◽  
Kim

This paper presents a miniature spectrometer fabricated based on a G-Fresnel optical device (i.e., diffraction grating and Fresnel lens) and operated by an image-processing algorithm, with an emphasis on the color space conversion in the range of visible light. The miniature spectrometer will be cost-effective and consists of a compact G-Fresnel optical device, which diffuses mixed visible light into the spectral image and a μ-processor platform embedded with an image-processing algorithm. The RGB color space commonly used in the image signal from a complementary metal–oxide–semiconductor (CMOS)-type image sensor is converted into the HSV color space, which is one of the most common methods to express color as a numeric value using hue (H), saturation (S), and value (V) via the color space conversion algorithm. Because the HSV color space has the advantages of expressing not only the three primary colors of light as the H but also its intensity as the V, it was possible to obtain both the wavelength and intensity information of the visible light from its spectral image. This miniature spectrometer yielded nonlinear sensitivity of hue in terms of wavelength. In this study, we introduce the potential of the G-Fresnel optical device, which is a miniature spectrometer, and demonstrated by measurement of the mechanoluminescence (ML) spectrum as a proof of concept.


2021 ◽  
Vol 5 (1) ◽  
pp. 308
Author(s):  
Dede Wandi ◽  
Fauziah Fauziah ◽  
Nur Hayati

The rose is a plant of the genus Rosa. The rose consists of more than 100 species with various colors. In selecting and sorting roses, roses are often found that are still fresh and wilted. Based on the problems faced in roses, a system design is carried out that can detect the wilting condition of roses. By applying the HSI and HSV methods to image processing applications, it is hoped that it can help in choosing the condition of roses. With research methods through observation and literature study. To see the conditions, roses can be divided into wilted flowers and fresh flowers. In its implementation and classification, by detecting the color of roses in the HSI and HSV color space, from a total of 230 images of red and white roses that tested 200 images using HSI and HSV, the value of Range was obtained on the HSI, H = 0.240634 - 0.5, S = 0.781818 - 1, and I = 0.477124 - 1 in the Fresh category, while the HSI Wilt Category, H = 0.170495 - 0.5, S = 0.40239 - 1, I = 0.562092 - 1. and also obtained the value of Range with HSV with Fresh category H = 0.240634 - 0.5, S = 0 - 0.988235, V = 0 - 0.988235, and Wilt category H = 0.170495-0.5, S = 0 - 0.996078, V = 0 - 0.996078. With an accuracy value of the HSI and HSV of 86.9%. Therefore, it can be concluded that the detection of wilting in roses using the HSI and HSV methods is the fastest in the process using the HSI method because it reads all the min-max values.


2020 ◽  
Vol 7 (1) ◽  
pp. 136-142
Author(s):  
Zilvanhisna Emka Fitri ◽  
Lindri Nalentine Yolanda Syahputri ◽  
Arizal Mujibtamala Nanda Imron

The myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by dysregulated proliferation and expansion of one or more of the myeloid lineages. The initial symptoms of MPN is a bone marrow abnormalities when producing red blood cells, white blood cells and platelets in large numbers and uncontrolled. An automatic and accurate white blood cell abnormality classification system is needed. This research uses digital image processing techniques such as conversion to the modified CIELab color space, segmentation techniques based on threshold values and feature extraction processes that produce four morphological features consisting of area, perimeter, metric and compactness. then the four features become input to the K-Nearest Neighborr (KNN) method. The testing process is based on variations in the value of K to get the best accuracy percentage of 94.3% tested on 159 test data.


Sign in / Sign up

Export Citation Format

Share Document