scholarly journals Machine Learning Driven IoT Based Smart Health Care Kit

Author(s):  
Lekhasree Narayanagari ◽  
Baidya Nath Saha

This paper focuses on developing a machine learning driven IOT based smart healthcare kit. It plays an important role in emergency medical service like Intensive Care Units (ICU), by using an INTEL GALILEO 2ND generation development board. It facilitates to monitor and track different health indicators such as Blood Pressure, Pulses, and Temperature of the patient. This system allows to send the real time data of a patient to the physician and record it for future use. In this research we conducted two experiments: a)heart disease prediction from pathology data and b) lung disease prediction from X-ray images. For heart disease prediction we evaluate the performance of K-Nearest Neighbour and Random Forest Classifier and for lung disease prediction, we use VGG19 deep architecture. Experimental results demonstrate that machine learning can help to automate the IoT based smart healthcare kit and help doctors to diagnose the diseases.

2021 ◽  
Vol 1916 (1) ◽  
pp. 012092
Author(s):  
N Karthikeyan ◽  
P Padmanaban ◽  
A Prasanth ◽  
D Ragunath

Author(s):  
Wan Adlina Husna Wan Azizan ◽  
A'zraa Afhzan Ab Rahim ◽  
Siti Lailatul Mohd Hassan ◽  
Ili Shairah Abdul Halim ◽  
Noor Ezan Abdullah

Author(s):  
Ramesh Ponnala ◽  
K. Sai Sowjanya

Prediction of Cardiovascular ailment is an important task inside the vicinity of clinical facts evaluation. Machine learning knowledge of has been proven to be effective in helping in making selections and predicting from the huge amount of facts produced by using the healthcare enterprise. on this paper, we advocate a unique technique that pursuits via finding good sized functions by means of applying ML strategies ensuing in improving the accuracy inside the prediction of heart ailment. The severity of the heart disease is classified primarily based on diverse methods like KNN, choice timber and so on. The prediction version is added with special combos of capabilities and several known classification techniques. We produce a stronger performance level with an accuracy level of a 100% through the prediction version for heart ailment with the Hybrid Random forest area with a linear model (HRFLM).


Deriving the methodologies to detect heart issues at an earlier stage and intimating the patient to improve their health. To resolve this problem, we will use Machine Learning techniques to predict the incidence at an earlier stage. We have a tendency to use sure parameters like age, sex, height, weight, case history, smoking and alcohol consumption and test like pressure ,cholesterol, diabetes, ECG, ECHO for prediction. In machine learning there are many algorithms which will be used to solve this issue. The algorithms include K-Nearest Neighbour, Support vector classifier, decision tree classifier, logistic regression and Random Forest classifier. Using these parameters and algorithms we need to predict whether or not the patient has heart disease or not and recommend the patient to improve his/her health.


In today’s modern world, the world population is affected with some kind of heart diseases. With the vast knowledge and advancement in applications, the analysis and the identification of the heart disease still remain as a challenging issue. Due to the lack of awareness in the availability of patient symptoms, the prediction of heart disease is a questionable task. The World Health Organization has released that 33% of population were died due to the attack of heart diseases. With this background, we have used Heart Disease Prediction dataset extracted from UCI Machine Learning Repository for analyzing and the prediction of heart disease by integrating the ensembling methods. The prediction of heart disease classes are achieved in four ways. Firstly, The important features are extracted for the various ensembling methods like Extra Trees Regressor, Ada boost regressor, Gradient booster regress, Random forest regressor and Ada boost classifier. Secondly, the highly importance features of each of the ensembling methods is filtered from the dataset and it is fitted to logistic regression classifier to analyze the performance. Thirdly, the same extracted important features of each of the ensembling methods are subjected to feature scaling and then fitted with logistic regression to analyze the performance. Fourth, the Performance analysis is done with the performance metric such as Mean Squared error (MSE), Mean Absolute error (MAE), R2 Score, Explained Variance Score (EVS) and Mean Squared Log Error (MSLE). The implementation is done using python language under Spyder platform with Anaconda Navigator. Experimental results shows that before applying feature scaling, the feature importance extracted from the Ada boost classifier is found to be effective with the MSE of 0.04, MAE of 0.07, R2 Score of 92%, EVS of 0.86 and MSLE of 0.16 as compared to other ensembling methods. Experimental results shows that after applying feature scaling, the feature importance extracted from the Ada boost classifier is found to be effective with the MSE of 0.09, MAE of 0.13, R2 Score of 91%, EVS of 0.93 and MSLE of 0.18 as compared to other ensembling methods.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fathima Aliyar Vellameeran ◽  
Thomas Brindha

Abstract Objectives To make a clear literature review on state-of-the-art heart disease prediction models. Methods It reviews 61 research papers and states the significant analysis. Initially, the analysis addresses the contributions of each literature works and observes the simulation environment. Here, different types of machine learning algorithms deployed in each contribution. In addition, the utilized dataset for existing heart disease prediction models was observed. Results The performance measures computed in entire papers like prediction accuracy, prediction error, specificity, sensitivity, f-measure, etc., are learned. Further, the best performance is also checked to confirm the effectiveness of entire contributions. Conclusions The comprehensive research challenges and the gap are portrayed based on the development of intelligent methods concerning the unresolved challenges in heart disease prediction using data mining techniques.


Sign in / Sign up

Export Citation Format

Share Document