scholarly journals The grin of Cheshire cat resurgence from supersymmetric localization

2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Daniele Dorigoni ◽  
Philip Glass

First we compute the \mbox{S}^2S2 partition function of the supersymmetric \mathbb{CP}^{N-1}ℂℙN−1 model via localization and as a check we show that the chiral ring structure can be correctly reproduced. For the \mathbb{CP}^1ℂℙ1 case we provide a concrete realisation of this ring in terms of Bessel functions. We consider a weak coupling expansion in each topological sector and write it as a finite number of perturbative corrections plus an infinite series of instanton-anti-instanton contributions. To be able to apply resurgent analysis we then consider a non-supersymmetric deformation of the localized model by introducing a small unbalance between the number of bosons and fermions. The perturbative expansion of the deformed model becomes asymptotic and we analyse it within the framework of resurgence theory. Although the perturbative series truncates when we send the deformation parameter to zero we can still reconstruct non-perturbative physics out of the perturbative data in a nice example of Cheshire cat resurgence in quantum field theory. We also show that the same type of resurgence takes place when we consider an analytic continuation in the number of chiral fields from NN to r\in\mathbb{R}r∈ℝ. Although for generic real rr supersymmetry is still formally preserved, we find that the perturbative expansion of the supersymmetric partition function becomes asymptotic so that we can use resurgent analysis and only at the end take the limit of integer rr to recover the undeformed model.

2003 ◽  
Vol 18 (30) ◽  
pp. 5475-5519 ◽  
Author(s):  
A. V. NESTERENKO

This paper gives an overview of recently developed model for the QCD analytic invariant charge. Its underlying idea is to bring the analyticity condition, which follows from the general principles of local Quantum Field Theory, in perturbative approach to renormalization group (RG) method. The concrete realization of the latter consists in explicit imposition of analyticity requirement on the perturbative expansion of β function for the strong running coupling, with subsequent solution of the corresponding RG equation. In turn, this allows one to avoid the known difficulties originated in perturbative approximation of the RG functions. Ultimately, the proposed approach results in qualitatively new properties of the QCD invariant charge. The latter enables one to describe a wide range of the strong interaction processes both of perturbative and intrinsically nonperturbative nature.


Author(s):  
Jean Zinn-Justin

Chapter 24 examines the topic of hyper–asymptotic expansions and instantons. A number of quantum mechanics and quantum field theory (QFT) examples exhibit degenerate classical minima connected by quantum barrier penetration effects. The analysis of the large order behaviour, based on instanton calculus, shows that the perturbative expansion is not Borel summable, and does not define unique functions. An important issue is then what kind of additional information is required to determine the exact expanded functions. While the QFT examples are complicated, and their study is still at the preliminary stage, in quantum mechanics, in the case of some analytic potentials that have degenerate minima (like the quartic double–well potential), the problem has been completely solved. Some examples are described in Chapter 24. There, the perturbative, complete, hyper–asymptotic expansion exhibits the resurgence property. The perturbative expansion can be related to the calculation of the spectral equation via the complex WKB method.


1989 ◽  
Vol 01 (01) ◽  
pp. 113-128 ◽  
Author(s):  
E. ELIZALDE ◽  
A. ROMEO

We study expressions for the regularization of general multidimensional Epstein zeta-functions of the type [Formula: see text] After reviewing some classical results in the light of the extended proof of zeta-function regularization recently obtained by the authors, approximate but very quickly convergent expressions for these functions are derived. This type of analysis has many interesting applications, e.g. in any quantum field theory defined in a partially compactified Euclidean spacetime or at finite temperature. As an example, we obtain the partition function for the Casimir effect at finite temperature.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Andrea Erdas

AbstractUsing the exact propagators in a constant magnetic field, the effective electromagnetic lagrangian at finite temperature and density is calculated to all orders in the field strength B within the framework of the complete electroweak model, in the weak coupling limit. The partition function and free energy are obtained explicitly and the finite temperature effective coupling is derived in closed form. Some implications of this result, potentially interesting to astrophysics and cosmology, are discussed.


1988 ◽  
Vol 03 (17) ◽  
pp. 1647-1650 ◽  
Author(s):  
P. MANSFIELD

We show that the first Donaldson invariant expressed by Witten as the partition function of a relativistic quantum field theory can be interpreted as the winding number of the stochastic map introduced by Nicolai in the context of supersymmetric Yang-Mills theories.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Vincenzo Branchina ◽  
Alberto Chiavetta ◽  
Filippo Contino

AbstractA formal expansion for the Green’s functions of a quantum field theory in a parameter $$\delta $$ δ that encodes the “distance” between the interacting and the corresponding free theory was introduced in the late 1980s (and recently reconsidered in connection with non-hermitian theories), and the first order in $$\delta $$ δ was calculated. In this paper we study the $${\mathcal {O}}(\delta ^2)$$ O ( δ 2 ) systematically, and also push the analysis to higher orders. We find that at each finite order in $$\delta $$ δ the theory is non-interacting: sensible physical results are obtained only resorting to resummations. We then perform the resummation of UV leading and subleading diagrams, getting the $${\mathcal {O}}(g)$$ O ( g ) and $${\mathcal {O}}(g^2)$$ O ( g 2 ) weak-coupling results. In this manner we establish a bridge between the two expansions, provide a powerful and unique test of the logarithmic expansion, and pave the way for further studies.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Stefan Förste ◽  
Hans Jockers ◽  
Joshua Kames-King ◽  
Alexandros Kanargias

Abstract We study the duality between JT gravity and the double-scaled matrix model including their respective deformations. For these deformed theories we relate the thermal partition function to the generating function of topological gravity correlators that are determined as solutions to the KdV hierarchy. We specialise to those deformations of JT gravity coupled to a gas of defects, which conforms with known results in the literature. We express the (asymptotic) thermal partition functions in a low temperature limit, in which non-perturbative corrections are suppressed and the thermal partition function becomes exact. In this limit we demonstrate that there is a Hawking-Page phase transition between connected and disconnected surfaces for this instance of JT gravity with a transition temperature affected by the presence of defects. Furthermore, the calculated spectral form factors show the qualitative behaviour expected for a Hawking-Page phase transition. The considered deformations cause the ramp to be shifted along the real time axis. Finally, we comment on recent results related to conical Weil-Petersson volumes and the analytic continuation to two-dimensional de Sitter space.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sujay K. Ashok ◽  
Songyuan Li ◽  
Jan Troost

Abstract We study AdS3× S1× Y supersymmetric string theory backgrounds with Neveu-Schwarz-Neveu-Schwarz flux that are dual to $$ \mathcal{N} $$ N = 2 superconformal theories on the boundary. We classify all worldsheet vertex operators that correspond to space-time chiral primaries. We compute space-time chiral ring structure constants for operators in the zero spectral flow sector using the operator product expansion in the worldsheet theory. We find that the structure constants take a universal form that depends only on the topological data of the $$ \mathcal{N} $$ N = 2 superconformal theory on Y.


2021 ◽  
pp. 39-49
Author(s):  
Adrian Tanasa

In this chapter we define specific tree weights which appear natural when considering a certain approach to non-perturbative renormalization in QFT, namely the constructive renormalization. Several examples of such tree weights are explicitly given in Appendix A. A fundamental step in QFT is to compute the logarithm of functional integrals used to define the partition function of a given model This comes from a fundamental theorem of enumerative combinatorics, stating the logarithm counts the connected objects. The main advantage of the perturbative expansion of a QFT into a sum of Feynman amplitudes is to perform this computation explicitly: the logarithm of the functional integral is the sum of Feynman amplitudes restricted to connected graphs. The main disadvantage is that the perturbative series indexed by Feynman graphs typically diverges.


Author(s):  
Jean Zinn-Justin

Chapter 23 examines perturbative expansion and summation methods in field theory. In quantum field theory, all perturbative expansions are divergent series in the mathematical sense. This leads to a difficulty when the expansion parameter is not small. In the case of Borel summable series, using the knowledge of the large order behaviour, a number of summation techniques have been developed to derive convergent sequences from divergent series. Some methods apply directly on the series like Padé approximants or order–dependent mapping (the ODM method). Others involve first a Borel transformation, like the Padé–Borel method. The method of Borel transformation, suitably modified, followed by a conformal mapping, has been applied to renormalization group (RG) functions of the phi4 3 field theory and has led to precise values of critical exponents.


Sign in / Sign up

Export Citation Format

Share Document