scholarly journals Neutrino non-standard interactions: A status report

Author(s):  
Bhupal Dev ◽  
K. S. Babu ◽  
Peter Denton ◽  
Pedro Machado ◽  
Carlos A. Argüelles ◽  
...  

This report summarizes the present status of neutrino non-standard interactions (NSI). After a brief overview, several aspects of NSIs are discussed, including connection to neutrino mass models, model-building and phenomenology of large NSI with both light and heavy mediators, NSI phenomenology in both short- and long-baseline neutrino oscillation experiments, neutrino cross-sections, complementarity of NSI with other low- and high-energy experiments, fits with neutrino oscillation and scattering data, DUNE sensitivity to NSI, effective field theory of NSI, as well as the relevance of NSI to dark matter and cosmology. We also discuss the open questions and interesting future directions that can be pursued by the community at large. This report is based on talks and discussions during the Neutrino Theory Network NSI workshop held at Washington University in St.~Louis from May 29-31, 2019

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
John Gargalionis ◽  
Raymond R. Volkas

Abstract Building UV completions of lepton-number-violating effective operators has proved to be a useful way of studying and classifying models of Majorana neutrino mass. In this paper we describe and implement an algorithm that systematises this model-building procedure. We use the algorithm to generate computational representations of all of the tree-level completions of the operators up to and including mass-dimension 11. Almost all of these correspond to models of radiative neutrino mass. Our work includes operators involving derivatives, updated estimates for the bounds on the new-physics scale associated with each operator, an analysis of various features of the models, and a look at some examples. We find that a number of operators do not admit any completions not also generating lower-dimensional operators or larger contributions to the neutrino mass, ruling them out as playing a dominant role in the neutrino-mass generation. Additionally, we show that there are at most five models containing three or fewer exotic multiplets that predict new physics that must lie below 100 TeV. Accompanying this work we also make available a searchable database containing all of our results and the code used to find the completions. We emphasise that our methods extend beyond the study of neutrino-mass models, and may be useful for generating completions of high-dimensional operators in other effective field theories. Example code: ref. [37].


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Juan C. Criado ◽  
Abdelhak Djouadi ◽  
Niko Koivunen ◽  
Martti Raidal ◽  
Hardi Veermäe

Abstract Using an effective field theory approach for higher-spin fields, we derive the interactions of colour singlet and electrically neutral particles with a spin higher than unity, concentrating on the spin-3/2, spin-2, spin-5/2 and spin-3 cases. We compute the decay rates and production cross sections in the main channels for spin-3/2 and spin-2 states at both electron-positron and hadron colliders, and identify the most promising novel experimental signatures for discovering such particles at the LHC. The discussion is qualitatively extended to the spin-5/2 and spin-3 cases. Higher-spin particles exhibit a rich phenomenology and have signatures that often resemble the ones of supersymmetric and extra-dimensional theories. To enable further studies of higher-spin particles at collider and beyond, we collect the relevant Feynman rules and other technical details.


2015 ◽  
Vol 37 ◽  
pp. 1560045 ◽  
Author(s):  
Christopher Lee

Soft Collinear Effective Theory (SCET) is an effective field theory of Quantum Chromodynamics (QCD) for processes where there are energetic, nearly lightlike degrees of freedom interacting with one another via soft radiation. SCET has found many applications in high-energy and nuclear physics, especially in recent years the physics of hadronic jets in e+e-, lepton-hadron, hadron-hadron, and heavy-ion collisions. SCET can be used to factorize multi-scale cross sections in these processes into single-scale hard, collinear, and soft functions, and to evolve these through the renormalization group to resum large logarithms of ratios of the scales that appear in the QCD perturbative expansion, as well as to study properties of nonperturbative effects. We overview the elementary concepts of SCET and describe how they can be applied in high-energy and nuclear physics.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Pedro Pasquini

We review the current status of neutrino oscillation experiments, mainly focusing on T2(H)K, NOνA, and DUNE. Their capability to probe high energy physics is found in the precision measurement of the CP phase and θ23. In general, neutrino mass models predict correlations among the mixing angles that can be used to scan and shrink their parameter space. We updated previous analysis and presented a list of models that contain such structure.


2020 ◽  
Vol 17 (02) ◽  
pp. 2050028
Author(s):  
Ayşe Elçi̇boğa Kuday ◽  
Ferhat Özok ◽  
Erdinç Ulaş Saka

We analyze dark matter in most general form of effective field theory approach. To examine the interactions between the weakly interacting massive particles (WIMPs) and the Standard Model (SM) particles, we use the six-dimensional EFT mediated by new physics scale [Formula: see text] at tree level. After implementing a new effective field theory model in FeynRules [FeynRules 2.0 A complete toolbox for tree-level phenomenology, Comput. Phys. Comm. 185(8) (2014) 2250–2300] We investigate the theory and constrain the theory by using relic density generated by MadDM [MadDM v.3.0: A Comprehensive tool for dark matter studies, Phys. Dark Univ. 24 (2019) 100249] tool of MadGraph5_aMC@NLO [The automated computation of tree-level and next-to-leading order differential cross-sections, and their matching to parton shower simulations, J. High Energy Phys. 79 (2014) 2014].


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Omar Benhar ◽  
Noemi Rocco

The quantitative description of the effects of nuclear dynamics on the measured neutrino-nucleus cross sections—needed to reduce the systematic uncertainty of long baseline neutrino oscillation experiments—involves severe difficulties. Owing to the uncertainty on the incoming neutrino energy, different reaction mechanisms contribute to the cross section measured at fixed energy and scattering angle of the outgoing lepton, and must therefore be consistently taken into account within a unified model. We research the theoretical approach based on the impulse approximation and the use of realistic nucleon spectral functions, allowing one to describe a variety of reaction mechanisms active in the broad kinematical range covered by neutrino experiments. The extension of this scheme to include more complex mechanisms involving the two-nucleon currents, which are believed to be important, is also outlined. The impact of nuclear effects on the determination of neutrino oscillation parameters is illustrated by analyzing the problem of neutrino energy reconstruction.


2014 ◽  
Vol 29 (28) ◽  
pp. 1446007 ◽  
Author(s):  
A. Donnachie ◽  
P. V. Landshoff

The high-energy behavior of soft scattering observables such as total cross-sections, elastic scattering at small momentum transfer, diffractive dissociation and central production have been described successfully in the context of Regge theory, with the same basic structure holding as energies have increased. For elastic scattering and diffraction dissociation the defining energies were those of the ISR, the [Formula: see text] collider and the Tevatron. The elastic scattering data from the LHC demonstrate the continuing applicability of Regge theory. Preliminary data on diffraction dissociation promise to add to our understanding and now, for the first time, we can expect to test fully these concepts in central production. Although the latter is the principal objective of this discussion, understanding the first two is an essential prerequisite as they define the formalism and establish parameters.


Sign in / Sign up

Export Citation Format

Share Document