scholarly journals Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis

Core Evidence ◽  
2015 ◽  
pp. 89 ◽  
Author(s):  
Arata Azuma ◽  
Minoru Inomata ◽  
Yasuhiko Nishioka
2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Doni ◽  
Alberto Mantovani ◽  
Barbara Bottazzi ◽  
Remo Castro Russo

PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient’s life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.


2012 ◽  
Vol 185 (4) ◽  
pp. 459-460
Author(s):  
Malgorzata Wygrecka ◽  
Grazyna Kwapiszewska ◽  
Ewa Jablonska ◽  
Susanne von Gerlach ◽  
Ingrid Henneke ◽  
...  

2017 ◽  
Vol 26 (144) ◽  
pp. 160125 ◽  
Author(s):  
Gianluca Bagnato ◽  
William Neal Roberts ◽  
Jesse Roman ◽  
Sebastiano Gangemi

Lung fibrosis can be observed in systemic sclerosis and in idiopathic pulmonary fibrosis, two disorders where lung involvement carries a poor prognosis. Although much has been learned about the pathogenesis of these conditions, interventions capable of reversing or, at the very least, halting disease progression are not available. Recent studies point to the potential role of micro messenger RNAs (microRNAs) in cancer and tissue fibrogenesis. MicroRNAs are short non-coding RNA sequences (20–23 nucleotides) that are endogenous, evolutionarily conserved and encoded in the genome. By acting on several genes, microRNAs control protein expression. Considering the above, we engaged in a systematic review of the literature in search of overlapping observations implicating microRNAs in the pathogenesis of both idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). Our objective was to uncover top microRNA candidates for further investigation based on their mechanisms of action and their potential for serving as targets for intervention against lung fibrosis. Our review points to microRNAs of the -29 family, -21-5p and -92a-3p, -26a-5p and let-7d-5p as having distinct and counter-balancing actions related to lung fibrosis. Based on this, we speculate that readjusting the disrupted balance between these microRNAs in lung fibrosis related to SSc and IPF may have therapeutic potential.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Chen-Xi Ren ◽  
Xin Jin ◽  
Dan-Ping Xie ◽  
Xiao-Yu Guo ◽  
Li-Yun Yu ◽  
...  

AbstractIdiopathic pulmonary fibrosis (IPF) is a serious and irreversible chronic lung disease. Bleomycin (BLM) is an anticancer drug, which can cause severe lung toxicity. The main target of oxidative stress-induced lung injury is alveolar epithelial cells, which lead to interstitial fibrosis. The present study investigated whether hispidin (HP), which has excellent antioxidant activity, attenuates bleomycin-induced pulmonary fibrosis via anti-oxidative effects in A549 cells. We found that hispidin reduced bleomycin-induced fibrosis of A549 cells by reducing reactive oxygen species (ROS) levels and inhibiting epithelial-mesenchymal transition. Taken together, our data suggest that hispidin has therapeutic potential in preventing bleomycin-induced pulmonary fibrosis.


Sign in / Sign up

Export Citation Format

Share Document