scholarly journals Development of anisamide-targeted PEGylated gold nanorods to deliver epirubicin for chemo-photothermal therapy in tumor-bearing mice

2019 ◽  
Vol Volume 14 ◽  
pp. 1817-1833 ◽  
Author(s):  
Limei Wang ◽  
Jin Pei ◽  
Zhongcheng Cong ◽  
Yifang Zou ◽  
Tianmeng Sun ◽  
...  
2017 ◽  
Author(s):  
Alla B. Bucharskaya ◽  
Galina N. Maslyakova ◽  
Nikita A. Navolokin ◽  
Georgy S. Terentyuk ◽  
Boris N. Khlebtsov ◽  
...  

2021 ◽  
Author(s):  
Shubi Zhao ◽  
Yiqun Luo ◽  
Zong Chang ◽  
Chenchen Liu ◽  
Tong Li ◽  
...  

Abstract The second near infrared window is considered to be the optimal optical window for medical imaging and therapy as the deep tissue penetration. A series gold nanorods with large aspect ratio have been synthesized. Strong plasma absorption in the second near infrared window from 1000 nm to 1300 nm could be observed. The biocompatibility of the synthesized gold nanorods is dramatically improved via coating by bovine serum albumin (BSA), while the optical properties of which remains. The breast cancer tumor-bearing mouse could be well treated by the prepared gold nanorods with the NIR-II light intensity as low as 0.75 W/cm2. In summary, these results prove the feasibility of using low dose to treat tumor in the NIR-II region.


ACS Nano ◽  
2016 ◽  
Vol 10 (2) ◽  
pp. 2375-2385 ◽  
Author(s):  
Yanlei Liu ◽  
Meng Yang ◽  
Jingpu Zhang ◽  
Xiao Zhi ◽  
Chao Li ◽  
...  

2021 ◽  
Vol 411 ◽  
pp. 128557
Author(s):  
Meishen Ren ◽  
Jiaojiao Zhou ◽  
Zhiyong Song ◽  
Hong Mei ◽  
Ming Zhou ◽  
...  

2021 ◽  
pp. 2009924
Author(s):  
Nan Song ◽  
Zhijun Zhang ◽  
Peiying Liu ◽  
Dihua Dai ◽  
Chao Chen ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mary K. Popp ◽  
Imane Oubou ◽  
Colin Shepherd ◽  
Zachary Nager ◽  
Courtney Anderson ◽  
...  

Photothermal therapy (PTT) treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs) and near-infrared (NIR) light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED) light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heatin vitroandin vivomodels to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 880 ◽  
Author(s):  
Yanhua Yao ◽  
Nannan Zhang ◽  
Xiao Liu ◽  
Qiaofeng Dai ◽  
Haiying Liu ◽  
...  

In this paper, the plasmon resonance effects of gold nanorods was used to achieve rapid photothermal therapy for malignant melanoma cells (A375 cells). After incubation with A375 cells for 24 h, gold nanorods were taken up by the cells and gold nanorod clusters were formed naturally in the organelles of A375 cells. After analyzing the angle and space between the nanorods in clusters, a series of numerical simulations were performed and the results show that the plasmon resonance coupling between the gold nanorods can lead to a field enhancement of up to 60 times. Such high energy localization causes the temperature around the nanorods to rise rapidly and induce cell death. In this treatment, a laser as low as 9.3 mW was used to irradiate a single cell for 20 s and the cell died two h later. The cell death time can also be controlled by changing the power of laser which is focused on the cells. The advantage of this therapy is low laser treatment power, short treatment time, and small treatment range. As a result, the damage of the normal tissue by the photothermal effect can be greatly avoided.


2018 ◽  
Vol 2 (4) ◽  
pp. 1800137 ◽  
Author(s):  
Qilin Yu ◽  
Ying‐Ming Zhang ◽  
Yao‐Hua Liu ◽  
Yu Liu

Sign in / Sign up

Export Citation Format

Share Document