scholarly journals Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice [Retraction]

2019 ◽  
Vol Volume 14 ◽  
pp. 2961-2962 ◽  
Author(s):  
Min-Xuan Xu ◽  
Ming Jiang ◽  
Wei-Wei Yang
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maki Murakoshi ◽  
Tomohito Gohda ◽  
Eri Adachi ◽  
Saki Ichikawa ◽  
Shinji Hagiwara ◽  
...  

AbstractProgranulin (PGRN) has been reported to bind tumor necrosis factor (TNF) receptor and to inhibit TNFα signaling. We evaluated the effect of augmentation of TNFα signaling by PGRN deficiency on the progression of kidney injury. Eight-week-old PGRN knockout (KO) and wild-type (WT) mice were fed a standard diet or high-fat diet (HFD) for 12 weeks. Albuminuria, markers of tubular damage, and renal mRNA levels of inflammatory cytokines were higher in HFD-fed KO (KO-HFD) mice than in HFD-fed WT (WT-HFD) mice. Body weight, vacuolization in proximal tubules, and systemic and adipose tissue inflammatory markers were lower in the KO-HFD mice than in the WT-HFD mice. The renal megalin expression was lower in the KO mice than in the WT mice regardless of the diet type. The megalin expression was also reduced in mouse proximal tubule epithelial cells stimulated with TNFα and in those with PGRN knockdown by small interfering RNA in vitro. PGRN deficiency was associated with both exacerbated renal inflammation and decreased systemic inflammation, including that in the adipose tissue of mice with HFD-induced obesity. Improved tubular vacuolization in the KO-HFD mice might partially be explained by the decreased expression of megalin in proximal tubules.


2016 ◽  
Vol 591 ◽  
pp. 57-65 ◽  
Author(s):  
Stephen L. Slocum ◽  
John J. Skoko ◽  
Nobunao Wakabayashi ◽  
Susan Aja ◽  
Masayuki Yamamoto ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33858 ◽  
Author(s):  
Amandine Everard ◽  
Lucie Geurts ◽  
Marie Van Roye ◽  
Nathalie M. Delzenne ◽  
Patrice D. Cani

JCI Insight ◽  
2021 ◽  
Author(s):  
Hak Joo Lee ◽  
Meenalakshmi M. Mariappan ◽  
Luke Norton ◽  
Terry Bakewell ◽  
Denis Feliers ◽  
...  

2017 ◽  
Vol 799 ◽  
pp. 201-210 ◽  
Author(s):  
Zheng Wang ◽  
Sun-O Ka ◽  
Youngyi Lee ◽  
Byung-Hyun Park ◽  
Eun Ju Bae
Keyword(s):  
P38 Mapk ◽  
High Fat ◽  

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Chao Kang ◽  
Bin Wang ◽  
Kanakaraju Kaliannan ◽  
Xiaolan Wang ◽  
Hedong Lang ◽  
...  

ABSTRACT Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP. Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP.


2017 ◽  
Vol 312 (2) ◽  
pp. F323-F334 ◽  
Author(s):  
Minji Sohn ◽  
Keumji Kim ◽  
Md Jamal Uddin ◽  
Gayoung Lee ◽  
Inah Hwang ◽  
...  

Fenofibrate activates not only peroxisome proliferator-activated receptor-α (PPARα) but also adenosine monophosphate-activated protein kinase (AMPK). AMPK-mediated cellular responses protect kidney from high-fat diet (HFD)-induced injury, and autophagy resulting from AMPK activation has been regarded as a stress-response mechanism. Thus the present study examined the role of AMPK and autophagy in the renotherapeutic effects of fenofibrate. C57BL/6J mice were divided into three groups: normal diet (ND), HFD, and HFD + fenofibrate (HFD + FF). Fenofibrate was administered 4 wk after the initiation of the HFD when renal injury was initiated. Mouse proximal tubule cells (mProx24) were used to clarify the role of AMPK. Feeding mice with HFD for 12 wk induced insulin resistance and kidney injury such as albuminuria, glomerulosclerosis, tubular injury, and inflammation, which were effectively inhibited by fenofibrate. In addition, fenofibrate treatment resulted in the activation of renal AMPK, upregulation of fatty acid oxidation (FAO) enzymes and antioxidants, and induction of autophagy in the HFD mice. In mProx24 cells, fenofibrate activated AMPK in a concentration-dependent manner, upregulated FAO enzymes and antioxidants, and induced autophagy, all of which were inhibited by treatment of compound C, an AMPK inhibitor. Fenofibrate-induced autophagy was also significantly blocked by AMPKα1 siRNA but not by PPARα siRNA. Collectively, these results demonstrate that delayed treatment with fenofibrate has a therapeutic effect on HFD-induced kidney injury, at least in part, through the activation of AMPK and induction of subsequent downstream effectors: autophagy, FAO enzymes, and antioxidants.


Sign in / Sign up

Export Citation Format

Share Document