scholarly journals In vitro and in vivo studies of surface-structured implants for bone formation

2012 ◽  
pp. 4873 ◽  
Author(s):  
Lu Xia ◽  
Bo Feng ◽  
Peizhi Wang ◽  
Siyang Ding ◽  
Zhiyuan Liu ◽  
...  
2018 ◽  
Vol 16 (3) ◽  
pp. 126-136 ◽  
Author(s):  
Preeti Makkar ◽  
Swapan Kumar Sarkar ◽  
Andrew R. Padalhin ◽  
Byoung-Gi Moon ◽  
Young Seon Lee ◽  
...  

Background: Magnesium (Mg)-based alloys are considered to be promising materials for implant application due to their excellent biocompatibility, biodegradability, and mechanical properties close to bone. However, low corrosion resistance and fast degradation are limiting their application. Mg–Ca alloys have huge potential owing to a similar density to bone, good corrosion resistance, and as Mg is essential for Ca incorporation into bone. The objective of the present work is to determine the in vitro degradation and in vivo performance of binary Mg– xCa alloy ( x = 0.5 or 5.0 wt%) to assess its usability for degradable implant applications. Methods: Microstructural evolutions for Mg– xCa alloys were characterized by optical, SEM, EDX, and XRD. In vitro degradation tests were conducted via immersion test in phosphate buffer saline solution. In vivo performance in terms of interface, biocompatibility, and biodegradability of Mg– xCa alloys was examined by implanting samples into rabbit femoral condyle for 2 and 4 weeks. Results: Microstructural results showed the enhancement in intermetallic Mg2Ca phase with increase in Ca content. Immersion tests revealed that the dissolution rate varies linearly, with Ca content exhibiting more hydrogen gas evolution, increased pH, and higher degradation for Mg–5.0Ca alloy. In vivo studies showed good biocompatibility with enhanced bone formation for Mg–0.5Ca after 4 weeks of implantation compared with Mg–5.0Ca alloy. Higher initial corrosion rate with prolonged inflammation and rapid degradation was noticed in Mg–5.0Ca compared with Mg–0.5Ca alloy. Conclusions: The results suggest that Mg–0.5Ca alloy could be used as a temporary biodegradable implant material for clinical applications owing to its controlled in vivo degradation, reduced inflammation, and high bone-formation capability.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1488
Author(s):  
Colleen McCarthy ◽  
Gulden Camci-Unal

As explained by Wolff’s law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hadi Samadian ◽  
Hamid Mobasheri ◽  
Mahmoud Azami ◽  
Reza Faridi-Majidi

Abstract In this study, we aimed to fabricate osteoconductive electrospun carbon nanofibers (CNFs) decorated with hydroxyapatite (HA) crystal to be used as the bone tissue engineering scaffold in the animal model. CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers via heat treatment and the carbonized nanofibers were mineralized by a biomimetic approach. The growth of HA crystals was confirmed using XRD, FTIR, and EDAX analysis techniques. The mineralization process turned the hydrophobic CNFs (WCA: 133.5° ± 0.6°) to hydrophilic CNFs/HA nanocomposite (WCA 15.3° ± 1°). The in vitro assessments revealed that the fabricated 24M-CNFs nanocomposite was biocompatible. The osteoconductive characteristics of CNFs/HA nanocomposite promoted in vivo bone formation in the rat’s femur defect site, significantly, observed by computed tomography (CT) scan images and histological evaluation. Moreover, the histomorphometric analysis showed the highest new bone formation (61.3 ± 4.2%) in the M-CNFs treated group, which was significantly higher than the negative control group (the defect without treatment) (< 0.05). To sum up, the results implied that the fabricated CNFs/HA nanocomposite could be considered as the promising bone healing material.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document