scholarly journals Solid lipid nanoparticles modified with stearic acid–octaarginine for oral administration of insulin

2012 ◽  
pp. 3333 ◽  
Author(s):  
Huixia Lv Hui-Xia ◽  
Zhen-Hai Zhang ◽  
Yin-long Zhang ◽  
Xu Wang ◽  
Xi-Ru Xu ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68743-68750 ◽  
Author(s):  
Sacheen Kumar ◽  
Jaspreet Kaur Randhawa

Paliperidone is an antipsychotic drug having poor water solubility and bioavailability. Solid lipid nanoparticles of stearic acid loaded with paliperidone were prepared to enhance the bioavailability.


2006 ◽  
Vol 6 (9) ◽  
pp. 2991-2995 ◽  
Author(s):  
K. Ruckmani ◽  
M. Sivakumar ◽  
P. A. Ganeshkumar

Solid Lipid Nanoparticles (SLN) containing Methotrexate (MTX), an anticancer drug for intravenous administration was formulated and characterized. The SLN dispersions with MTX, stearic acid, and soya lecithin in the ratio of 1:4:1, 1:4:1.5, and 1:4:2, sodium taurodeoxycholate and distilled water were prepared by micro emulsification solidification method. The results show that the prepared MTX-SLN particles (with MTX–Stearic acid–Soya lecithin—1:4:2) have an average size of 270 nm with 51.3% drug entrapment. The in vitro-release was attained up to 15th h. The pharmacokinetic studyreveals that the half-life and MRT of SLNs were higher than MTX solution. The life span of EAC (Ehrlich Ascite Carcinoma) bearing mice was increased when treated with MTX-SLNs (Methotrexate nanoparticles). These results clearly indicate that SLNs are a promising sustained release drug targeting system for lipophilic antitumour drugs.


2015 ◽  
Vol 31 ◽  
pp. 15-29 ◽  
Author(s):  
Zahra Akbari ◽  
Massoud Amanlou ◽  
Javad Karimi-Sabet ◽  
Abolfazl Golestani ◽  
Mojtaba Shariaty Niassar

The purpose of this study was to prepare ibuprofen loaded solid lipid nanoparticles (IBU-SLNs) that is, effective in oral drug delivery. IBU-SLNs were synthesized by co-precipitation of rapid expansion of supercritical solution (CO-RESS). The produced SLNs consisted of stearic acid as lipid matrix. The unprocessed stearic acid, ibuprofen and IBU-SLNs were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), fourier transform infrared spectrophotometry (FTIR) and high performance liquid chromatography (HPLC). XRD patterns along with DSC showed that ibuprofen was present in both amorphous and crystalline form within lipid matrix. FTIR showed that molecular interactions that could alter the chemical structure of the IBU did not occur. The RESS process could produce ultrafine spherical particles of SLNs with high drug loading capacity. The IBU dissolution profile showed that the formulated SLNs have effectively increased the IBU solubility


2020 ◽  
Vol 17 (4) ◽  
pp. 343-347
Author(s):  
Harinder Singh ◽  
Ruchi Sood ◽  
Tridib Chaira ◽  
Alka Khanna ◽  
Dilip J Upadhaya ◽  
...  

Background: Rifampicin is known to degrade at the acidic pH of the stomach, especially in the presence of isoniazid. Although isoniazid also degrades partially, its degradation is reversible. Objective: Presently, we provide a proof of the fact that the simultaneous oral administration of rifampicin (RIF), upon incorporation into solid lipid nanoparticles (RIF-SLNs), with isoniazid (INH) overcomes its INH-induced degradation and improves its oral bioavailability in rats. Methods: Solid lipid nanoparticles of RIF (RIF-SLNs) were prepared using a novel and patented method. The effect of INH was investigated on in vivo bioavailability of RIF both in its free and encapsulated (RIF-SLNs) form, after oral administration to rats. Results: Cmax and AUC0-∞ of RIF increased 158 % and 125 %, respectively, upon incorporation into SLNs versus free RIF when combined with INH. The Tmax decreased from 5.67 h to 3.3 h, and the plasma concentration of RIF remained above its MIC (8 μg/ml) at all the tested time points starting with 15 min, when administered as RIF-SLNs in combination with INH. Conclusions: The results confirm the scope of combining RIF-SLNs with INH to overcome the bioavailability of free RIF when combined with INH, especially in fixed dose combinations.


Sign in / Sign up

Export Citation Format

Share Document