Methotrexate Loaded Solid Lipid Nanoparticles (SLN) for Effective Treatment of Carcinoma

2006 ◽  
Vol 6 (9) ◽  
pp. 2991-2995 ◽  
Author(s):  
K. Ruckmani ◽  
M. Sivakumar ◽  
P. A. Ganeshkumar

Solid Lipid Nanoparticles (SLN) containing Methotrexate (MTX), an anticancer drug for intravenous administration was formulated and characterized. The SLN dispersions with MTX, stearic acid, and soya lecithin in the ratio of 1:4:1, 1:4:1.5, and 1:4:2, sodium taurodeoxycholate and distilled water were prepared by micro emulsification solidification method. The results show that the prepared MTX-SLN particles (with MTX–Stearic acid–Soya lecithin—1:4:2) have an average size of 270 nm with 51.3% drug entrapment. The in vitro-release was attained up to 15th h. The pharmacokinetic studyreveals that the half-life and MRT of SLNs were higher than MTX solution. The life span of EAC (Ehrlich Ascite Carcinoma) bearing mice was increased when treated with MTX-SLNs (Methotrexate nanoparticles). These results clearly indicate that SLNs are a promising sustained release drug targeting system for lipophilic antitumour drugs.

2017 ◽  
Vol 4 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Sukhwinder Singh ◽  
Sukhmeet Singh Kamal ◽  
Amit Sharma ◽  
Daljit Kaur ◽  
Manoj Kumar Katual ◽  
...  

Objectives: The present study aims on preparing Levosulpiride loaded solid lipid nanoparticles (SLNs) to reduce the dose, frequency of dosing, reduce side effects and to increase the bioavailable fraction of drug (<30% orally in general). Methods: Levosulpiride was characterized by preformulation studies like physical appearance, melting point, assay, calibration curve, FTIR analysis and DSC analysis. The calibration curve of the drug was prepared in pH 6.8 phosphate buffer. Two lipids (Stearic acid and Palmitic acid) were used as lipid phase to prepare SLNs. Factorial design (23) was applied to formulate 16 formulations (8 for each lipid i.e. SF1-SF8 and PF1-PF8). Levosulpiride SLNs were prepared by solvent evaporation method followed by homogenization. Results: The optimized formulations were characterized by particle size analysis, zeta potential analysis, in vitro drug release and drug release kinetics. Drug-excipient interaction in optimized formulation was characterized by FTIR, DSC and TEM analysis. Conclusion: On the basis of evaluation parameters, the formulation SF1 (containing Stearic acid) and PF1 (containing Palimitic acid) found to be better formulations amongst their groups with a controlled drug release after a period of 24 hrs.


Author(s):  
INDRAYANI D. RAUT ◽  
AREHALLI S. MANJAPPA ◽  
SHRINIVAS K. MOHITE ◽  
RAJENDRA C. DOIJAD

Objective: This study was aimed to design and characterize Paclitaxel-loaded Solid Lipid Nanoparticles (SLNs) to achieve site specificity,reduce toxicity and sustained release pattern. Methods: Paclitaxel-loaded solid lipid nanoparticles were fabricated by microemulsion followed by probe sonication technique using stearic acid as lipid and stabilized of the mixture of surfactants. In this study, 32 full factorial design was employed for optimizing the concentration of lipid as stearic acid and surfactant (soya lecithin) for the nanoparticles. The optimization was done by studying the dependent variable of particle size and % entrapment efficiency. Results: The results showed that the paclitaxel-loaded solid lipid nanoparticles prepared with the concentration of 33.31 % stearic acid and 500 mg of soya lecithin were optimum characteristic than other formulations. They showed the average particles size 149±4.10 nm and PDI 250±2.04. The zeta potential, % EE and % drug loading capacity was found to be respectively-29.7, 93.38±1.90 and 0.81±0.01. The optimized batch of Paclitaxel SLNs exhibited spherical shape with smooth surface analyzed by Transmission Electron Microscopy. In vitro study showed sustained release profile and was found to follow Higuchi Kinetics Equation. Conclusion: The SLNs of paclitaxel m et al. l the requirements of a colloidal drug delivery system. They had a particle size in nanosize; their size distribution was narrow and all the particles were in a spherical shape.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 282-284
Author(s):  
A. D. Shirokikh ◽  
◽  
M. Y. Koroleva ◽  
E. V. Yurtov ◽  
◽  
...  

In this work, we studied the effect of yttrium stearate on the physicochemical properties of dispersions of solid lipid nanoparticles composed of stearic acid stabilized with nonionic surfactants (Tween 60, Span 60). The results showed that an increase in the concentration of yttrium stearate leads to increasing kinetic stability and decreasing the average size of the aggregates. Along with this, the average size of single particles remains practically unchanged and amounts to 35±5 nm.


2018 ◽  
Vol 16 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Harjeet Kaur ◽  
Baldeep Kumar ◽  
Amitava Chakrabarti ◽  
Bikash Medhi ◽  
Manish Modi ◽  
...  

Background: Blood-brain permeability is the primary concern when dealing with the biodistribution of drugs to the brain in neurological diseases. Objective: The purpose of the study is to develop the nanoformulation of Epigallocatechin gallate (EGCG) in order to improve its bioavailability and penetration into the brain. Methods: EGCG loaded Solid Lipid Nanoparticles (SLNs) have been developed using microemulsification method and pharmacological assessments were performed. Results: Surface morphology and micromeritics analysis showed the successful development of EGCG loaded solid lipid nanoparticles with an average size of 162.4 nm and spherical in shape. In vitro release studies indicated a consistent and slow drug release. Pharmacological evaluation of SLN-EGCG demonstrated a significant improvement in cerebral ischemia-induced memory impairment. Conclusion: The results indicate that the EGCG loaded SLNs provide a potential drug delivery system for improved delivery of EGCG to the brain, hence, enhancing its brain bioavailability.


2019 ◽  
Vol 8 (9) ◽  
pp. 1464 ◽  
Author(s):  
Blanca Cervantes ◽  
Lide Arana ◽  
Silvia Murillo-Cuesta ◽  
Marina Bruno ◽  
Itziar Alkorta ◽  
...  

Cisplatin is a chemotherapeutic agent that causes the irreversible death of auditory sensory cells, leading to hearing loss. Local administration of cytoprotective drugs is a potentially better option co-therapy for cisplatin, but there are strong limitations due to the difficulty of accessing the inner ear. The use of nanocarriers for the efficient delivery of drugs to auditory cells is a novel approach for this problem. Solid lipid nanoparticles (SLNs) are biodegradable and biocompatible nanocarriers with low solubility in aqueous media. We show here that stearic acid-based SLNs have the adequate particle size, polydispersity index and ζ-potential, to be considered optimal nanocarriers for drug delivery. Stearic acid-based SLNs were loaded with the fluorescent probe rhodamine to show that they are efficiently incorporated by auditory HEI-OC1 (House Ear Institute-Organ of Corti 1) cells. SLNs were not ototoxic over a wide dose range. Glucocorticoids are used to decrease cisplatin-induced ototoxicity. Therefore, to test SLNs’ drug delivery efficiency, dexamethasone and hydrocortisone were tested either alone or loaded into SLNs and tested in a cisplatin-induced ototoxicity in vitro assay. Our results indicate that the encapsulation in SLNs increases the protective effect of low doses of hydrocortisone and lengthens the survival of HEI-OC1 cells treated with cisplatin.


Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Sign in / Sign up

Export Citation Format

Share Document