scholarly journals Identification of small open reading frames (sORFs) associated with heat tolerance in nitrogen-fixing root nodules of Phaseolus vulgaris wild-type and cv BAT93

Author(s):  
Alejandra Zayas-del Moral ◽  
Damián Martínez- Reyes ◽  
Carmen Quinto ◽  
Federico Sanchez ◽  
Claudia Díaz- Camino

Common bean is an important legume crop and a major source of protein for low-income groups around the world. Legumes have the ability to engage symbiotic interactions with nitrogen-fixing soil bacteria. In this study, next-generation sequencing technology was used to perform transcriptome analyses of a yet unexplored group of peptides encoded by small open reading frames (sORFs; < 150 codons) in nitrogen-fixing symbiotic nodules of two heat-tolerant genotypes of common bean (Phaseolus vulgaris L): the cultivar BAT93 and a wild genotype (named P. vulgaris 7) from the south of Mexico. After heat stress, total RNA was isolated and used for transcriptome analysis. Sixty differentially expressed sORFs were identified between control and heat stress treatments. The expression profiles of these sORFs suggest that, regardless the evolutionary closeness between P. vulgaris BAT93 and P. vulgaris 7, each genotype has independently adapted their molecular signaling pathways to survive heat stress. The dataset developed may provide a useful resource for future genetic and genomic studies in these species

2020 ◽  
Author(s):  
Justin A. Bosch ◽  
Berrak Ugur ◽  
Israel Pichardo-Casas ◽  
Jorden Rabasco ◽  
Felipe Escobedo ◽  
...  

SummaryNaturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open reading frames (smORFs). Here, we describe two previously uncharacterized peptides in Drosophila encoded by conserved smORFs, Sloth1 and Sloth2. These peptides are translated from the same bicistronic transcript and share sequence similarities, suggesting that they encode paralogs. We provide evidence that Sloth1/2 are highly expressed in neurons, localize to mitochondria, and form a complex. Double mutant analysis in animals and cell culture revealed that sloth1 and sloth2 are not functionally redundant, and their loss causes animal lethality, reduced neuronal function, impaired mitochondrial function, and neurodegeneration. These results suggest that phenotypic analysis of smORF genes in Drosophila can provide a wealth of information on the biological functions of this poorly characterized class of genes.


2020 ◽  
Vol 8 (6) ◽  
pp. 888
Author(s):  
Justas Vaitekūnas ◽  
Renata Gasparavičiūtė ◽  
Jonita Stankevičiūtė ◽  
Gintaras Urbelis ◽  
Rolandas Meškys

N-Heterocyclic compounds are widely spread in the biosphere, being constituents of alkaloids, cofactors, allelochemicals, and artificial substances. However, the fate of such compounds including a catabolism of hydroxylated pyridines is not yet fully understood. Arthrobacter sp. IN13 is capable of using 4-hydroxypyridine as a sole source of carbon and energy. Three substrate-inducible proteins were detected by comparing protein expression profiles, and peptide mass fingerprinting was performed using MS/MS. After partial sequencing of the genome, we were able to locate genes encoding 4-hydroxypyridine-inducible proteins and identify the kpi gene cluster consisting of 16 open reading frames. The recombinant expression of genes from this locus in Escherichia coli and Rhodococcus erytropolis SQ1 allowed an elucidation of the biochemical functions of the proteins. We report that in Arthrobacter sp. IN13, the initial hydroxylation of 4-hydroxypyridine is catalyzed by a flavin-dependent monooxygenase (KpiA). A product of the monooxygenase reaction is identified as 3,4-dihydroxypyridine, and a subsequent oxidative opening of the ring is performed by a hypothetical amidohydrolase (KpiC). The 3-(N-formyl)-formiminopyruvate formed in this reaction is further converted by KpiB hydrolase to 3-formylpyruvate. Thus, the degradation of 4-hydroxypyridine in Arthrobacter sp. IN13 was analyzed at genetic and biochemical levels, elucidating this catabolic pathway.


2011 ◽  
Vol 12 (11) ◽  
pp. R118 ◽  
Author(s):  
Emmanuel Ladoukakis ◽  
Vini Pereira ◽  
Emile G Magny ◽  
Adam Eyre-Walker ◽  
Juan Couso

2008 ◽  
Vol 51 (6) ◽  
pp. 1089-1096 ◽  
Author(s):  
João Francisco Berton Junior ◽  
Julio Cesar Pires Santos ◽  
Cileide Maria Medeiros Coelho ◽  
Osmar Klauberg Filho

The objective of this work was to evaluate the efficiency of nitrogen fixing inoculum associated with Co + Mo leaf spray on the common bean grain yield and grain nutrients, cv. FT Nobre. Three dosages of the inoculant (0, 200 and 400 g/50 kg seeds), combined with four Co + Mo leaf spray levels (T0=0,0; T1=4.9,49; T2=7.3,73; and T3=9.7,97 g ha-1 of Co and Mo, respectively) were tested. The grain yield with the use of the inoculant (400 g / 5O kg seed-1) associated with the higher level of Co+Mo (T2 and T3) was very similar to the mineral nitrogen condition fertilizer recommended for the bean (70 kg ha-1 of N). With the increased inoculant dosage, an increase of the protein content and of P and Mg in the grain was also observed. The results indicated that the mineral nitrogen source could be replaced by inoculation of the seeds with Rhizobium tropici combined with Co + Mo leaf spray.


2015 ◽  
Author(s):  
Nurhafizhoh Zainuddin ◽  
Rosli Md. Illias ◽  
Nor Muhammad Mahadi ◽  
Mohd Firdaus-Raih

1990 ◽  
Vol 10 (1) ◽  
pp. 28-36 ◽  
Author(s):  
C I Brannan ◽  
E C Dees ◽  
R S Ingram ◽  
S M Tilghman

The mouse H19 gene was identified as an abundant hepatic fetal-specific mRNA under the transcriptional control of a trans-acting locus termed raf. The protein this gene encoded was not apparent from an analysis of its nucleotide sequence, since the mRNA contained multiple translation termination signals in all three reading frames. As a means of assessing which of the 35 small open reading frames might be important to the function of the gene, the human H19 gene was cloned and sequenced. Comparison of the two homologs revealed no conserved open reading frame. Cellular fractionation showed that H19 RNA is cytoplasmic but not associated with the translational machinery. Instead, it is located in a particle with a sedimentation coefficient of approximately 28S. Despite the fact that it is transcribed by RNA polymerase II and is spliced and polyadenylated, we suggest that the H19 RNA is not a classical mRNA. Instead, the product of this unusual gene may be an RNA molecule.


Sign in / Sign up

Export Citation Format

Share Document