scholarly journals Understanding Temporal Variations of Atmospheric Radon-222 around Japan Using Model Simulations

Author(s):  
Kentaro ISHIJIMA ◽  
Kazuhiro TSUBOI ◽  
Hidekazu MATSUEDA ◽  
Taichu Yasumichi TANAKA ◽  
Takashi MAKI ◽  
...  
2017 ◽  
Author(s):  
Martin P. Langowski ◽  
Christian von Savigny ◽  
John P. Burrows ◽  
Didier Fussen ◽  
Erin C. M. Dawkins ◽  
...  

Abstract. During the last decade, multiple limb sounding satellites have measured the global sodium (Na) number densities in the mesosphere and lower thermosphere (MLT).Datasets are now available from GOMOS, SCIAMACHY (both on Envisat) and OSIRIS/Odin. Furthermore, global model simulations of the Na layer in the MLT simulated with WACCM-Na are available. In this paper, we compare these global datasets. Globally, there is an agreement in the observed and simulated monthly average of Na vertical column densities that were compared with each other. They show a clear seasonal cycle with a summer minimum most pronounced at the poles. They also show signs of a semi-annual oscillation in the equatorial region. The vertical column densities vary between 0.5 × 109 cm−2 to 7 × 109 cm−2 near the poles and between 3 × 109 cm−2 to 4 × 109 cm−2 at the equator. The phase of the seasonal cycle and semi-annual oscillation shows small differences between the different instruments. The full width at half maximum of the profiles is 10 to 16 km for most latitudes, but significantly smaller in the polar summer. The centroid altitudes of the measured sodium profiles range from 89 to 95 km, while the model shows on average 2 to 4 km lower centroid altitudes. This coincides with a 3 km lower mesopause altitude in the WACCM simulations compared to measurements, which may be the reason for the low centroid altitudes. Despite this global 2 to 4 km shift, the model captures latitudinal and temporal variations. The variation of the WACCM dataset during the year at different latitudes is similar to the one of the measurements. Furthermore, the differences between the measured profiles with different instruments and therefore different local times are also present in the model simulated profiles. This capturing of latitutinal and temporal variations is also found for the vertical column densities and profile widths.


2015 ◽  
Vol 7 (1) ◽  
pp. 83-102 ◽  
Author(s):  
P. Sonali ◽  
D. Nagesh Kumar

This study analyzes the change in annual and seasonal maximum and minimum temperature (Tmax and Tmin) during the period 1950–2005 (i.e., second half of the 20th century). In-depth analyses have been carried out for all over India as well as for five temperature homogenous regions of India separately. First, the temporal variations of annual and seasonal Tmax and Tmin are analyzed, employing the trend free pre-whitening Mann-Kendall approach. Secondly, it is assessed whether the observations contain significant signals above the natural internal variability determined from a long ‘piControl’ experiment, using Monte Carlo simulation. Thirdly, fingerprint based formal detection and attribution analysis is used to determine the signal strengths of observed and model simulations with respect to different considered experiments. Finally, these signal strengths are compared to attribute the observed changes in Tmax and Tmin to different factors. All the model simulated datasets are retrieved from the CMIP5 archive. It is noticed that the emergence of observed trends is more pronounced in Tmin compared to Tmax. Although observed changes are not solely associated with one specific causative factor, most of the changes in Tmin lie above the bounds of natural internal climate variability.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1633
Author(s):  
Andrés Yarce Botero ◽  
Santiago Lopez-Restrepo ◽  
Nicolás Pinel Peláez ◽  
Olga L. Quintero ◽  
Arjo Segers ◽  
...  

In this work, we present the development of a 4D-Ensemble-Variational (4DEnVar) data assimilation technique to estimate NOx top-down emissions using the regional chemical transport model LOTOS-EUROS with the NO2 observations from the TROPOspheric Monitoring Instrument (TROPOMI). The assimilation was performed for a domain in the northwest of South America centered over Colombia, and includes regions in Panama, Venezuela and Ecuador. In the 4DEnVar approach, the implementation of the linearized and adjoint model are avoided by generating an ensemble of model simulations and by using this ensemble to approximate the nonlinear model and observation operator. Emission correction parameters’ locations were defined for positions where the model simulations showed significant discrepancies with the satellite observations. Using the 4DEnVar data assimilation method, optimal emission parameters for the LOTOS-EUROS model were estimated, allowing for corrections in areas where ground observations are unavailable and the region’s emission inventories do not correctly reflect the current emissions activities. The analyzed 4DEnVar concentrations were compared with the ground measurements of one local air quality monitoring network and the data retrieved by the satellite instrument Ozone Monitoring Instrument (OMI). The assimilation had a low impact on NO2 surface concentrations reducing the Mean Fractional Bias from 0.45 to 0.32, primordially enhancing the spatial and temporal variations in the simulated NO2 fields.


2008 ◽  
Vol 8 (22) ◽  
pp. 6627-6654 ◽  
Author(s):  
C. H. Song ◽  
M. E. Park ◽  
K. H. Lee ◽  
H. J. Ahn ◽  
Y. Lee ◽  
...  

Abstract. In this study, the spatio-temporal and seasonal distributions of EOS/Terra Moderate Resolution Imaging Spectroradiometer (MODIS)-derived aerosol optical depth (AOD) over East Asia were analyzed in conjunction with US EPA Models-3/CMAQ v4.3 modeling. In this study, two MODIS AOD products (τMODIS: τM-BAER and τNASA) retrieved through a modified Bremen Aerosol Retrieval (M-BAER) algorithm and NASA collection 5 (C005) algorithm were compared with the AOD (τCMAQ) that was calculated from the US EPA Models-3/CMAQ model simulations. In general, the CMAQ-predicted AOD values captured the spatial and temporal variations of the two MODIS AOD products over East Asia reasonably well. Since τMODIS cannot provide information on the aerosol chemical composition in the atmosphere, different aerosol formation characteristics in different regions and different seasons in East Asia cannot be described or identified by τMODIS itself. Therefore, the seasonally and regionally varying aerosol formation and distribution characteristics were investigated by the US EPA Models-3/CMAQ v4.3 model simulations. The contribution of each particulate chemical species to τMODIS and τCMAQ showed strong spatial, temporal and seasonal variations. For example, during the summer episode, τMODIS and τCMAQ were mainly raised due to high concentrations of (NH4)2SO4 over Chinese urban and industrial centers and secondary organic aerosols (SOAs) over the southern parts of China, whereas during the late fall and winter episodes, τMODIS and τCMAQ were higher due largely to high levels of NH4NO3 formed over the urban and industrial centers, as well as in areas with high NH3 emissions. τCMAQ was in general larger than τMODIS during the year, except for spring. The high biases (τCMAQ>τMODIS) may be due to the excessive formation of both (NH4)2SO4 (summer episode) and NH4NO3 (fall and winter episodes) over China, possibly from the use of overestimated values for NH3 emissions in the CMAQ modeling. According to CMAQ modeling, particulate NH4NO3 made a 14% (summer) to 54% (winter) contribution to σext and τCMAQ. Therefore, the importance of NH4NO3 in estimating τ should not be ignored, particularly in studies of the East Asian air quality. In addition, the accuracy of τM-BAER and τNASA was evaluated by a comparison with the AOD (τAERONET) from the AERONET sites in East Asia. Both τM-BAER and τNASA showed a strong correlation with τAERONET around the 1:1 line (R=0.79), indicating promising potential for the application of both the M-BAER and NASA aerosol retrieval algorithms to satellite-based air quality monitoring studies in East Asia.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 900 ◽  
Author(s):  
Zhe Wang ◽  
Itsushi Uno ◽  
Kazuo Osada ◽  
Syuichi Itahashi ◽  
Keiya Yumimoto ◽  
...  

Atmospheric ammonia (NH3) plays an important role in the formation of secondary inorganic aerosols, the neutralization of acid rain, and the deposition to ecosystems, but has not been well understood yet, especially over East Asia. Based on the GEOS-Chem model results, the IASI satellite retrievals, the in-site surface observations of a nationwide filter pack (FP) network over Japan and the long-term high resolution online NH3 measurements at Fukuoka of western Japan, the spatio-temporal distributions of atmospheric NH3 over East Asia was analyzed comprehensively. A significant seasonal variation with a summer peak was found in all datasets. Comparison between the satellite retrievals and model simulations indicated that the IASI NH3 vertical column density (VCD) showed good consistency with GEOS-Chem results over North and central China, but had large differences over South China due to the effect of clouds. Over the Japan area, GEOS-Chem simulated NH3 concentrations successfully reproduced the spatio-temporal variations compared with in-situ observations, while IASI NH3 VCD retrievals were below or near the detection limit and difficult to obtain a reasonable correlation for with model results. The comprehensive analysis indicated that there were still some differences among different datasets, and more in-situ observations, improved satellite retrievals, and high-resolution model simulations with more accurate emissions are necessary for better understanding the atmospheric NH3 over East Asia.


2017 ◽  
Vol 10 (8) ◽  
pp. 2989-3006 ◽  
Author(s):  
Martin P. Langowski ◽  
Christian von Savigny ◽  
John P. Burrows ◽  
Didier Fussen ◽  
Erin C. M. Dawkins ◽  
...  

Abstract. During the last decade, several limb sounding satellites have measured the global sodium (Na) number densities in the mesosphere and lower thermosphere (MLT). Datasets are now available from Global Ozone Monitoring by Occultation of Stars (GOMOS), the SCanning Imaging Absorption spectroMeter for Atmospheric CHartography (SCIAMACHY) (both on Envisat) and the Optical Spectrograph and InfraRed Imager System (OSIRIS) (on Odin). Furthermore, global model simulations of the Na layer in the MLT simulated by the Whole Atmosphere Community Climate Model, including the Na species (WACCM-Na), are available. In this paper, we compare these global datasets.The observed and simulated monthly averages of Na vertical column densities agree reasonably well with each other. They show a clear seasonal cycle with a summer minimum most pronounced at the poles. They also show signs of a semi-annual oscillation in the equatorial region. The vertical column densities vary from 0. 5  ×  109 to 7  ×  109 cm−2 near the poles and from 3  ×  109 to 4  ×  109 cm−2 at the Equator. The phase of the seasonal cycle and semi-annual oscillation shows small differences between the Na amounts retrieved from different instruments. The full width at half maximum of the profiles is 10 to 16 km for most latitudes, but significantly smaller in the polar summer. The centroid altitudes of the measured sodium profiles range from 89 to 95 km, whereas the model shows on average 2 to 4 km lower centroid altitudes. This may be explained by the mesopause being 3 km lower in the WACCM simulations than in measurements. Despite this global 2–4 km shift, the model captures well the latitudinal and temporal variations. The variation of the WACCM dataset during the year at different latitudes is similar to the one of the measurements. Furthermore, the differences between the measured profiles with different instruments and therefore different local times (LTs) are also present in the model-simulated profiles. This capturing of latitudinal and temporal variations is also found for the vertical column densities and profile widths.


2008 ◽  
Vol 8 (3) ◽  
pp. 8661-8713 ◽  
Author(s):  
C. H. Song ◽  
M. E. Park ◽  
H. J. Ahn ◽  
K. H. Lee ◽  
Y. Lee ◽  
...  

Abstract. In this study, the spatio-temporal and seasonal distributions of EOS/Terra Moderate Resolution Imaging Spectroradiometer (MODIS)-derived aerosol optical depth (AOD) over East Asia were analyzed in conjunction with US EPA Models-3/CMAQ v4.3 modeling. In this study, two MODIS AOD products (τ MODIS:τM-BAER and τNASA) retrieved through a modified Bremen Aerosol Retrieval (M-BAER) algorithm and NASA collection 5 (C005) algorithm were compared with the AOD (τCMAQ) that was calculated from the US EPA Models-3/CMAQ model simulations. In general, the CMAQ-predicted AOD values captured the spatial and temporal variations of the two MODIS AOD products over East Asia reasonable well. Since τMODIS cannot provide information on the aerosol chemical composition in the atmosphere, different aerosol formation characteristics in different regions and different seasons in East Asia cannot be described or identified by τMODIS itself. Therefore, the seasonally and regionally varying aerosol formation and distribution characteristics were investigated by the US EPA Models-3/CMAQ v4.3 model simulations. The contribution of each particulate chemical species to τM-BAER, τNASA, and τCMAQ showed strong spatial, temporal and seasonal variations. For example, during the summer episode, τM-BAER, τNASA, and τCMAQ were mainly raised due to high concentrations of (NH4)2SO4 over Chinese urban and industrial centers and secondary organic aerosols (SOAs) over the southern parts of China, whereas during the winter episode, τM-BAER, τNASA, and τCMAQ were higher due largely to high levels of NH3NO3 formed over the urban and industrial centers, as well as in areas with high NH3 emissions. In addition, the accuracy of τM-BAER and τNASA was evaluated by a comparison with the AOD (τAERONET) from the AERONET sites in East Asia. Both τM-BAER and τNASA showed a strong correlation with τAERONETR around the 1:1 line (R=0.79), indicating promising potential for the application of both the M-BAER and NASA aerosol retrieval algorithms to satellite-based air quality monitoring studies in East Asia.


Author(s):  
Shuqi Yan ◽  
Bin Zhu ◽  
Tong Zhu ◽  
Chune Shi ◽  
Duanyang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document