scholarly journals A Numerical Study of an Intense Quasi-stationary Convection Band over the Korean Peninsula.

2002 ◽  
Vol 80 (5) ◽  
pp. 1221-1245 ◽  
Author(s):  
Jianhua SUN ◽  
Tae-Young LEE
2010 ◽  
Vol 49 (12) ◽  
pp. 2381-2403 ◽  
Author(s):  
Jung-Hoon Kim ◽  
Hye-Yeong Chun

Abstract On 2 April 2007, nine cases of moderate-or-greater-level clear-air turbulence (CAT) were observed from pilot reports over South Korea during the 6.5 h from 0200 to 0830 UTC. Those CAT events occurred in three different regions of South Korea: the west coast, Jeju Island, and the eastern mountain areas. The characteristics and possible mechanisms of the CAT events in the different regions are investigated using the Weather Research and Forecasting model. The simulation consists of six nested domains focused on the Korean Peninsula, with the finest horizontal grid spacing of 0.37 km. The simulated wind and temperature fields in a 30-km coarse domain are in good agreement with those of the Regional Data Assimilation and Prediction System (RDAPS) analysis data of the Korean Meteorological Administration and observed soundings of operational radiosondes over South Korea. In synoptic features, an upper-level front associated with strong meridional temperature gradients is intensified, and the jet stream passing through the central part of the Korean Peninsula exceeds 70 m s−1. Location and timing of the observed CAT events are reproduced in the finest domains of the simulated results in three different regions. Generation mechanisms of the CAT events revealed in the model results are somewhat different in the three regions. In the west coast area, the tropopause is deeply folded down to about z = 4 km because of the strengthening of an upper-level front, and the maximized vertical wind shear below the jet core produces localized turbulence. In the Jeju Island area, localized mixing and turbulence are generated on the anticyclonic shear side of the enhanced jet, where inertial instability and ageostrophic flow are intensified in the lee side of the convective system. In the eastern mountain area, large-amplitude gravity waves induced by complex terrain propagate vertically and subsequently break down over the lee side of topography, causing localized turbulence. For most of the CAT processes considered, except for the mountain-wave breaking, standard NWP resolutions of tens of kilometers are adequate to capture the CAT events.


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


Sign in / Sign up

Export Citation Format

Share Document