scholarly journals Mutual Coupling Reduction in Microstrip Antennas using Defected Ground Structure

Author(s):  
Lan Ngoc Nguyen

A Multiple Input Multiple Output (MIMO) antenna with high isolation is proposed in this paper. The proposed antenna includes two sets of four elements (2 x 2) and it is yielded at the central frequency of 5.5 GHz for Wireless Local Area Network (WLAN) applications. Based on RT5880 with height of 1.575 mm, the overall size of MIMO antenna is 140 x 76 x 1.575 mm3. To get high isolation between antenna elements, a Defected Ground Structure (DGS) is integrated on ground plane. Besides, the MIMO antenna witnesses a large bandwidth of 9.1% and an efficiency of 90% while the pick gain is 8.5 dBi. The measurement results are compared to simulation ones to verify the performance of the proposed antenna.

2015 ◽  
Vol 8 (2) ◽  
pp. 309-317 ◽  
Author(s):  
Raefat Jalila El Bakouchi ◽  
Marc Brunet ◽  
Tchanguiz Razban ◽  
Abdelilah Ghammaz

This paper presents a multiple-input and multiple-output dual-element planar inverted-F antenna (PIFA) array for broadband operation covering the HIgh PERformance radio Local Area Network/2 (5.2 GHz/5.6 GHz), Wireless Local Area Network (5.2 GHz/5.8 GHz), and the Worldwide Interoperability for Microwave Access (5.5 GHz) bands for the compact wireless communication devices. The antenna dimension is reduced substantially with a miniature ground plane. The PIFA array provides a large bandwidth (670 MHz) and a high isolation between its ports less than −26 dB. The proposed antenna has been analyzed and designed with Ansoft HFSS v.11. Then a prototype was fabricated and tested for its performance in terms of bandwidth, S-parameters, and radiation pattern. A parametric study is made to analyze the effect of different PIFA parameters on the operating frequency and the S-parameters. The diversity performances are evaluated using computer simulation technology microwave studio (CSTMWS). The broadband performance and the high isolation are achieved in both simulation and measurement.


A triple band microstrip-fed patch antenna is presented which contains the radiating structure having rectangular zigzag shape patch and an altered ground structure with a swastic shape design. This modified ground plane actually acts as a defected ground structure (DGS). Both the modified ground plane and radiating patch are perfect electric conductors. The patch is imprinted on a substrate named as Epoxy Glass FR-4 having thickness 1.6 mm, relative permittivity 4.4, and loss tangent 0.0024. The designed microstrip patch antenna (MPA) is able to generate three specific operating bands viz. 11.9–13.6 GHz, 5.71–5.82 GHz, 4.5-4.6 GHz with adequate bandwidth of 1.64 GHz, 110 MHz and 100 MHz and corresponding return loss of -32dB, -23dB, -14.3dB respectively covering Wireless Local Area Network (WLAN), C-band and Ku-band applications. A parametric study has been performed for the rectangular slots located in the patch. Proposed MPA is simulated using Computer Simulation Technology Microwave Studio Version 14.0 (CST MWS V14.0). Lastly, the fabrication of the proposed antenna with optimized parameters has been accomplished and measured results for S-parameter magnitude have been discussed


Author(s):  
Nada N. Tawfeeq

Microwave engineers have been known to designedly created defects in the shape of carved out patterns on the ground plane of microstrip circuits and transmission lines for a long time, although their implementations to the antennas are comparatively new. The term Defected Ground Structure (DGS), precisely means a single or finite number of defects. At the beginning, DGS was employed underneath printed feed lines to suppress higher harmonics. Then DGS was directly integrated with antennas to improve the radiation characteristics, gain and to suppress mutual coupling between adjacent elements. Since then, the DGS techniques have been explored extensively and have led to many possible applications in the communication industry. The objective of this paper is to design and investigate microstrip patch antenna that operates at 2.4 GHz for Wireless Local Area Network WLAN IEEE 802.11b/g/n, ,Zigbee, Wireless HART, Bluetooth and several proprietary technologies that operate in the 2.4 GHz band. The design of the proposed antenna involves using partially Defected Ground Structure and circular/cross slots and compare it to the traditional microstrip patch antenna.  The results show improvement in both the gain of 3.45 dB and the S11 response of -22.3 dB along with reduction in the overall dimensions of the antenna. As a conclusion, the performance of the antenna has been improved through the incorporation with the DGS and slots structures regarding the S11 response and the gain. The proposed antenna become more compact. Finally, the radiation pattern of proposed antenna has remained directional in spite of adding slots on the ground plane.


2019 ◽  
Vol 11 (08) ◽  
pp. 851-862 ◽  
Author(s):  
Ngoc Lan Nguyen ◽  
Van Yem Vu

AbstractIn this paper, a multiple input multiple output antenna which operates at 5.8 GHz for wireless local area network applications is proposed. The proposed antenna is composed of two sets of four elements antenna array (2 × 2) on the top and a novel metamaterial structure on the ground plane. Here, the ground plane, which includes a lattice of 2 × 5 unit cells of metamaterial structure, is utilized in order to improve parameters of the antenna. Thanks to the proposed metamaterial structure, not only gain and bandwidth of antenna are enhanced, but also mutual coupling is reduced. The final design, with an overall size of 137 × 77 × 3.048 mm3, resulted in a |S11| <−10 dB bandwidth of 1.78 GHz and a peak gain of 9.2 dBi. In addition, the isolation is higher than 18 dB although the close separation from edge to edge of the two antennas is only 2 mm and radiation efficiency of 73% at the operating frequency band. All is simulated based on CST Studio software and the simulated S-parameter results of the antenna are in good agreement with measurement results.


2014 ◽  
Vol 7 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Xi-Wang Dai ◽  
Long Li ◽  
Zhen-Ye Wang ◽  
Chang-Hong Liang

In this paper, a compact multiple-input multiple-output (MIMO) antenna system with high isolation is proposed for 2.4 GHz wireless local area network (WLAN) application. The system is composed of two aperture-coupled shorted patch antennas with a spacing of 4 mm (only 0.032λ). The antenna is fed with an H-shaped coupling slot, and the defected shorting wall is used for high isolation. The proposed MIMO system exhibits an isolation of better than −20 dB and a maximum isolation of −43 dB at the central frequency. The envelope correlation coefficient is less than 0.01. The simulated and measured results show that the proposed antenna is a good candidate for MIMO system with higher isolation and better diversity.


2013 ◽  
Vol 347-350 ◽  
pp. 1695-1698 ◽  
Author(s):  
Wen Li ◽  
Jun Jun Wang ◽  
Yan Chao Sun ◽  
Xian Chao Meng

A compact and simple ultra-wideband microstrip-fed planar antenna with double bandstop characteristic is presented. The antenna consists of a rectangular monopole and two W-shaped slots inserted into the radiating patch and the truncated ground plane. By using a W-shaped slot defected ground structure (DGS) in the feedline, a stopband of 800 MHz (from 5.1 to 5.9 GHz) for band rejection of wireless local area network (WLAN) is achieved. To obtain the other stopband (from 3.7-4.4 GHz), a same shaped slot is etched into the monopole. Moreover, the two stopbands can be controlled by adjusting the length of the slot respectively. The simulation results show that the designed antenna, with a compact size of 38.5 mm×42.5 mm, has an impedance bandwidth of 2.811 GHz for voltage standing wave ratio (VSWR) less than 2, besides two frequency stopbands of 3.74.4 GHz and 5.15.9 GHz. Moreover, the main features including omnidirectional H-plane radiation patterns and the appropriate impedance characteristic are achieved by beveling the radiating patch and the microstrip-fed line of the proposed antenna.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pravin Ratilal Prajapati

An application of defected ground structure (DGS) to reduce out-of-band harmonics has been presented. A compact, proximity feed fractal slotted microstrip antenna for wireless local area network (WLAN) applications has been designed. The proposed 3rd iteration reduces antenna size by 43% as compared to rectangular conventional antenna and by introducing H shape DGS, the size of an antenna is further reduced by 3%. The DGS introduces stop band characteristics and suppresses higher harmonics, which are out of the band generated by 1st, 2nd, and 3rd iterations. H shape DGS is etched below the 50 Ω feed line and transmission coefficient parameters (S21) are obtained by CST Microwave Studio software. The values of equivalent L and C model have been extracted using a trial version of the diplexer filter design software. The stop band characteristic of the equivalent LC model also has been simulated by the Advance Digital System software, which gives almost the same response as compared to the simulation of CST Microwave Studio V. 12. The proposed antenna operates from 2.4 GHz to 2.49 GHz, which covers WLAN band and has a gain of 4.46 dB at 2.45 GHz resonance frequency.


Author(s):  
Jaswinder Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In the present work, a novel multistrip monopole antenna fed by a cross-shaped stripline comprising one vertical and two horizontal strips has been proposed for wireless local area network (WLAN)/Industrial, Scientific, and Medical band (ISM)/International Mobile Telecommunication (IMT)/BLUETOOTH/Worldwide Interoperability for Microwave Access (WiMAX) applications. The designed antenna has a small overall size of 20 × 30 mm2. The goal of this paper is to use defected ground structure (DGS) in the proposed antenna design to achieve dual-band operation with appreciable impedance bandwidth at the two operating modes satisfying several communication standards simultaneously. The antenna was simulated using Computer Simulation Technology Microwave Studio (CST MWS) V9 based on the finite integration technique (FIT) with perfect boundary approximation. Finally, the proposed antenna was fabricated and some performance parameters were measured to validate against simulation results. The design procedure, parametric analysis, simulation results along with measurements for this multistrip monopole antenna using DGS operating simultaneously at WLAN (2.4/5.8 GHz), IMT (2.35 GHz), BLUETOOTH (2.45 GHz), and WiMAX (5.5 GHz) are presented.


2019 ◽  
Vol 11 (5-6) ◽  
pp. 523-531 ◽  
Author(s):  
Geetanjali Singla ◽  
Rajesh Khanna ◽  
Davinder Parkash

AbstractThe spectral congestion in existing Industrial, Scientific, and Medical (ISM) Wireless Local Area Network (WLAN) bands has led to the emergence of new ISM bands (Unlicensed National Information Infrastructure (UNII)) from 5.150 to 5.710 GHz. In this paper, a simple uniplanar, high gain, microstrip antenna is designed, fabricated, and tested for existing WLAN and new UNII standards. The proposed antenna provides dualband operation by joining two rectangular rings and cutting Defected Ground Structure in the Coplanar Wave Guide (CPW) feed. The experimental and simulation results show good return loss characteristics and stable radiation pattern over the desired frequency bands ranging from 2.20 to 2.65 GHz (WLAN band) at a lower frequency and from 5.0 to 5.45 GHz (UNII-1/UNII-2 bands). The measured peak gains are 5.5 and 4.9 dBi at 2.45 GHz (WLAN band) and 5.15 GHz (UNII band), respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wen Piao Lin ◽  
Dong-Hua Yang ◽  
Zong-De Lin

This paper presents a novel dual-band planar inverted-e-shaped antenna (PIEA) using defected ground structure (DGS) for Bluetooth and wireless local area network (WLAN) applications. The PIEA can reduce electromagnetic interferences (EMIs) and it is constructed on a compact printed circuit board (PCB) size of 10 × 5 × 4 mm3. Experimental results indicate that the antenna with a compact meandered slit can improve the operating impedance matching and bandwidths at 2.4 and 5.5 GHz. The measured power gains at 2.4 and 5.5 GHz band are 1.99 and 3.71 dBi; antenna efficiencies are about 49.33% and 55.23%, respectively. Finally, the good performances of the proposed antenna can highly promote for mobile device applications.


Sign in / Sign up

Export Citation Format

Share Document