PSO optimum control strategy of 7 degrees of freedom semi-active suspensions

Author(s):  
Yeonsung Choi ◽  
Jubin Qiao ◽  
Fuqiang Yang
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1015
Author(s):  
Mingfei Huang ◽  
Yongting Deng ◽  
Hongwen Li ◽  
Jing Liu ◽  
Meng Shao ◽  
...  

This paper concentrates on a robust resonant control strategy of a permanent magnet synchronous motor (PMSM) for electric drivers with model uncertainties and external disturbances to improve the control performance of the current loop. Firstly, to reduce the torque ripple of PMSM, the resonant controller with fractional order (FO) calculus is introduced. Then, a robust two degrees-of-freedom (Robust-TDOF) control strategy was designed based on the modified resonant controller. Finally, by combining the two control methods, this study proposes an enhanced Robust-TDOF regulation method, named as the robust two degrees-of-freedom resonant controller (Robust-TDOFR), to guarantee the robustness of model uncertainty and to further improve the performance with minimized periodic torque ripples. Meanwhile, a tuning method was constructed followed by stability and robust stability analysis. Furthermore, the proposed Robust-TDOFR control method was applied in the current loop of a PMSM to suppress the periodic current harmonics caused by non-ideal factors of inverter and current measurement errors. Finally, simulations and experiments were performed to validate our control strategy. The simulation and experimental results showed that the THDs (total harmonic distortion) of phase current decreased to a level of 0.69% and 5.79% in the two testing environments.


2014 ◽  
Vol 5 (3) ◽  
pp. 25-48
Author(s):  
Girish Sriram ◽  
Alex Jensen ◽  
Steve C. Chiu

The human hand along with its fingers possess one of the highest numbers of nerve endings in the human body. It thus has the capacity for the richest tactile feedback for positioning capabilities. This article shares a new technique of controlling slippage. The sensing system used for the detection of slippage is a modified force sensing resistor (FSR®). The control system is a fuzzy logic control algorithm with multiple rules that is designed to be processed on a mobile handheld computing platform and integrated/working alongside a traditional Electromyography (EMG) or Electroencephalography (EEG) based control system used for determining position of the fingers. A 5 Degrees of Freedom (DOF) hand, was used to test the slippage control strategy in real time. First a reference EMG signal was used for getting the 5 DOF hand to grasp an object, using position control. Then a slip was introduced to see the slippage control strategy at work. The results based on the plain tactile sensory feedback and the modified sensory feedback are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Juana-Mariel Dávila-Vilchis ◽  
Juan C. Ávila-Vilchis ◽  
Adriana H. Vilchis-González ◽  
LAZ-Avilés

This paper establishes design criteria for soft exogloves (SEG) to be used as rehabilitation or assistance devices. This research consists in identifying, selecting, and grouping SEG features based on the analysis of 91 systems that have been proposed during the last decade. Thus, function, mobility, and usability criteria are defined and explicitly discussed to highlight SEG design guidelines. Additionally, this study provides a detailed description of each system that was analysed including application, functional task, palm design, actuation type, assistance mode, degrees of freedom (DOF), target fingers, motions, material, weight, force, pressure (only for fluids), control strategy, and assessment. Such characteristics have been reported according to specific design methodologies and operating principles. Technological trends are contemplated in this contribution with emphasis on SEG design opportunity areas. In this review, suggestions, limitations, and implications are also discussed in order to enhance future SEG developments aimed at stroke survivors or people with hand disabilities.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 155477-155491
Author(s):  
Huanan Qi ◽  
Bo You ◽  
Liang Ding ◽  
Wenhao Lian ◽  
Ye Yuan ◽  
...  

2013 ◽  
Vol 401-403 ◽  
pp. 1628-1631
Author(s):  
Zai Ke Tian ◽  
Suo Chang Yang ◽  
De Long Feng ◽  
Yun Zhi Yao

To determine the action angle of is the important topics on Trajectory Correction technology.The pulse force action angle and residual impact point deviation were theoretically analyzed on the basis of traditional control strategy of pulse jets. It has been found that there may be a large residual impact point deviation when the correction ability is different. An optimization strategy for the pulse force action angle control was presented, and the method was verified by the 6-degrees of freedom trajectory simulation.


Author(s):  
Cristiano Spelta ◽  
Diego Delvecchio ◽  
Sergio M. Savaresi

This paper is devoted to the design of a novel semi-active comfort-oriented control strategy based on the “half-car” modeling of the vehicle. The half car model is an effective description of the vertical behaviors in a vehicle like a motorcycle, since it is able to represent both the heave and pitch dynamics. A recent control strategy (the “Mix-1-Sensor”) have been proven to be the quasi-optimal control strategy when the system is described with a quarter car model and the comfort objective is the control goal. This paper presents an analysis of the performances of the Mix-1-Sensor implemented in a half car: this strategy is able to guarantee a quasi optimal performance in terms of heave dynamics but it is not able to manage the pitch dynamics efficiently. A pitch-oriented extension of this strategy is proposed in order to guarantee a better filtering of the pitch dynamics.


Sign in / Sign up

Export Citation Format

Share Document