scholarly journals Shaking table testing and numerical modeling of continuous welded ballast track on bridges under longitudinal seismic loading

2017 ◽  
Vol 19 (5) ◽  
pp. 3610-3628 ◽  
Author(s):  
Xiankui Wei ◽  
Rong Chen ◽  
Ping Wang ◽  
Hao Liu ◽  
Jieling Xiao ◽  
...  
2015 ◽  
Vol 82 ◽  
pp. 186-198 ◽  
Author(s):  
Qing-Hua Han ◽  
Ying Xu ◽  
Yan Lu ◽  
Jie Xu ◽  
Qiu-Hong Zhao

2017 ◽  
Vol 62 (1) ◽  
pp. 102-111
Author(s):  
Abdelhalim Airouche ◽  
Hassan Aknouche ◽  
Hakim Bechtoula ◽  
Nourredine Mezouer ◽  
Abderrahmane Kibboua

Shaking table testing continues to play an important role in earthquake engineering research. It has been recognized as a powerful testing method to evaluate structural components and systems under realistic dynamic loads. Although it represents a very attractive experimental procedure, many technical challenges, which require attention and consideration, still remain. High fidelity in signal reproduction is the focus of the work presented in this paper. The main objective of this paper is to investigate the capabilities of adaptive control techniques based on Amplitude Phase Control (APC) and Adaptive Harmonic Cancellation (AHC) on the harmonic signal tracking performance of the shaking table. A series of 232 sinusoidal command waveforms with various frequencies and amplitudes were conducted on the shaking table of the laboratory of the National Earthquake Engineering Applied Research Center (CGS, Algeria). Experimental results are reported and recommendations on the use of these adaptive control techniques are discussed.


2021 ◽  
Vol 27 (12) ◽  
pp. 1-12
Author(s):  
Haider N. Abdul Hussein ◽  
Qassun S. Mohammed Shafiqu ◽  
Zeyad S. M. Khaled

Experimental model was done for pile model of L / D = 25 installed into a laminar shear box contains different saturation soil densities (loose and dense sand) to evaluate the variation of pore water pressure before and after apply seismic loading. Two pore water pressure transducers placed at position near the middle and bottom of pile model to evaluate the pore water pressure during pullout tests. Seismic loading applied by uniaxial shaking table device, while the pullout tests were conducted through pullout device. The results of changing pore water pressure showed that the variation of pore water pressure near the bottom of pile is more than variation near the middle of pile in all tests. The variation of pore water pressure after apply seismic loading is more than the variation before apply seismic loading near the middle of pile and near the bottom of pile and in loose and dense sand. Variation of pore water pressure after apply seismic loading and uplift force is less than the variation after apply seismic loading in loose sand at middle and bottom of pile.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Lanfang Luo ◽  
Nan Jiang ◽  
Jihong Bi

This study investigated the real-time substructure shaking table testing (RTSSTT) of an equipment-structure-soil (ESS) system and the effects of soil on the seismic energy responses of the equipment-structure (ES) subsystem. First, the branch modal substructure approach was employed to derive the formulas needed for the RTSSTT of the ESS system. Then, individual equations for calculating the energy responses of the equipment and the structure were provided. The ES subsystem was adopted as the experimental substructure, whereas the reduced soil model was treated as the numerical substructure when the RTSSTT was performed on the ESS system. The effectiveness of the proposed testing method was demonstrated by comparing the test results with those of the integrated finite element analysis. The energy responses of the ES subsystem in the case of rigid ground (i.e., the ES system) were compared with those considering the effects of soil (i.e., the ESS system). The input energy responses of the ES subsystem were found to decrease significantly after taking the effects of soil into account. Differences due to the soil effects should be considered in the seismic design for the ES system.


2009 ◽  
Vol 25 (2) ◽  
pp. 439-464 ◽  
Author(s):  
Amador Terán-Gilmore ◽  
Oscar Zuñiga-Cuevas ◽  
Jorge Ruiz-García

This paper presents a practical displacement-based evaluation procedure for the seismic assessment of low-height regular confined masonry buildings. First, the so-called Coefficient Method established in several FEMA documents is adapted to obtain rapid estimates of inelastic roof displacement demands for regular confined masonry buildings. For that purpose, a statistical study of constant relative strength inelastic displacement ratios of single-degree-of-freedom systems representing confined masonry buildings is carried out. Second, a nonlinear simplified model is introduced to perform pushover analysis of regular confined masonry buildings whose global and local behavior is dominated by shear deformations in the masonry walls. The model, which can be applied through the use of commercial software, can be used to establish the capacity curve of such buildings. Finally, the evaluation procedure is applied to a three-story building tested at a shaking table testing facility.


Sign in / Sign up

Export Citation Format

Share Document