Small shaking table testing and numerical analysis of free-field site response and soil-structure oscillation under seismic loading

2020 ◽  
Vol 79 (6) ◽  
pp. 2949-2969
Author(s):  
Fatih Goktepe ◽  
Murat Sahin ◽  
Erkan Celebi
2016 ◽  
Vol 53 (9) ◽  
pp. 1363-1375 ◽  
Author(s):  
Behrang Dadfar ◽  
M. Hesham El Naggar ◽  
Miroslav Nastev

Seismic site response of discontinuous permafrost is discussed. The presence of frozen ground in soil deposits can significantly affect their dynamic response due to stiffer conditions characterized by higher shear-wave velocities compared to unfrozen soils. Both experimental and numerical investigations were conducted to examine the problem. The experimental program included a series of 1g shaking table tests on small-scale models. Nonlinear numerical analyses were performed employing FLAC software. The numerical model was verified using the obtained experimental results. Parametric simulations were then conducted using the verified model to study variations of the free-field spectral accelerations (on top of the frozen and unfrozen soil blocks) with the scheme of frozen–unfrozen soil, and to determine the key parameters and their effects on seismic site response. Results show that spectral accelerations were generally higher in frozen soils than in unfrozen ones. It was found that the shear-wave velocity of the frozen soil as well as the assumed geometry of the blocks and their spacing have a significant impact on the site response.


2008 ◽  
Vol 28 (6) ◽  
pp. 453-467 ◽  
Author(s):  
Dimitris Pitilakis ◽  
Matt Dietz ◽  
David Muir Wood ◽  
Didier Clouteau ◽  
Arezou Modaressi

2020 ◽  
Vol 100 ◽  
pp. 103389 ◽  
Author(s):  
Weifeng Wu ◽  
Shiping Ge ◽  
Yong Yuan ◽  
Wenqi Ding ◽  
Ioannis Anastasopoulos

2013 ◽  
Vol 353-356 ◽  
pp. 240-246
Author(s):  
Li Hui Tian ◽  
Guang Yi Sun ◽  
Xian Zhang Ling ◽  
Zi Yu Wang ◽  
Juan Wan

The principal objective of this study is to make use of medium and strong motion data from instrumented shaking table tests to evaluate the effects of kinematic soil-structure interaction on foundation input motion (FIM). The shaking table tests consisted of a 2×2 pile group in two-and three-layered liquefiable soils (models 1 and 2). Each test model was subjected to three realistic earthquake motions with peak accelerations ranging from 0.13g to 0.50g, and time step ranging from 0.006 to 0.02 sec. The three input earthquake motion represented the realistic earthquake motion with high frequency, low frequency and high amplitude. The foundation/free-field ground motion variations were quantified in terms of acceleration time histories and Fourier amplitude spectrum. Preliminary analysis of the data suggests that (1) regarding the input motion with high frequency, the higher peak acceleration of the foundation indicates the structure feedback and kinematic interaction between the soil and foundation during shaking; soil layering has little effect on foundation input motion, (2) regarding the input motion with low frequency, the kinematic soil-structure interaction increases the foundation response for model 2 while reduces it for model 1. The soil profile has significant effect on the predominant frequency, (3) regarding the input motion with high amplitude, the higher response of foundation in model 1 indicates the stronger kinematic SSI effect. The small deviation between the free field and foundation in model 2 indicates the coherent motion of the foundation with soil and no obvious kinematic SSI effect, (4) soil liquefaction has significant effect on the values of peak acceleration and peak Fourier amplitude.


2021 ◽  
Vol 13 (9) ◽  
pp. 4995
Author(s):  
Seongnoh Ahn ◽  
Gun Park ◽  
Hyungchul Yoon ◽  
Jae-Hyeok Han ◽  
Jongwon Jung

Modeling the soil–structure interaction (SSI) in seismic design involves the use of soil response curves for single-degree-of-freedom (SDOF) structures; however, real structures have multiple degrees of freedom (MDOF). In this study, shaking-table-derived p-y curves for SDOF and MDOF superstructures were compared using numerical analysis. It was found that an MDOF structure experienced less displacement than an SDOF structure of the same weight, but the effect of increasing the DOF decreased at greater pile depths. Numerical analysis results estimated using the natural periods and mass participation rates of the structures were similar to those of shaking table tests. Abbreviations: finite element: FE; frequency response function: FRF; multiple degrees of freedom: MDOF; single degree of freedom: SDOF; soil–structure interaction: SSI.


2017 ◽  
Vol 19 (5) ◽  
pp. 3610-3628 ◽  
Author(s):  
Xiankui Wei ◽  
Rong Chen ◽  
Ping Wang ◽  
Hao Liu ◽  
Jieling Xiao ◽  
...  

Author(s):  
Mehrdad Kimiaei ◽  
Mohsen Ali Shayanfar ◽  
M. Hesham El Naggar ◽  
Ali Akbar Aghakouchak

Pile supported offshore platforms in seismically active areas should be designed to survive severe earthquake excitations with no global structural failure. It is often required to perform nonlinear seismic analysis of offshore platforms that accounts for soil nonlinearity, discontinuity condition at pile soil interfaces, energy dissipation through soil radiation damping and structural nonlinear behaviours of the piles. In this study a BNWF (Beam on Nonlinear Winkler Foundation) model is incorporated into a finite element program (ANSYS) and it is used to compute the lateral response of piles subjected to seismic loading. The soil stiffness is established using the P-Y curve. The results of equivalent linear earthquake free field ground motion analyses are used as the input excitations at support nodes of the model. The components and advantages of this practical ANSYS model in seismic pile soil structure interaction analyses are discussed and addressed in detail. Computed responses compared well with the experimental test results. Sensitivity of the results to model parameters and site response calculations are evaluated.


Sign in / Sign up

Export Citation Format

Share Document