scholarly journals Efficacy of aqueous extracts of some solanaceous plants on juveniles mortality and egg hatching on the root knot nematode, Meloidogyne javanica under laboratory conditions

2021 ◽  
Vol 4 (1) ◽  
pp. 221-227
Author(s):  
M. Abdel-Mageed ◽  
N. Mahmoud ◽  
A. El-Mesalamy
2020 ◽  
pp. 93-98
Author(s):  
Shilpy Shakya ◽  
Bindhya Chal Yadav

Plant-parasitic nematodes have emerged as nature’s most successful among all parasites known till today. These animals have been reported from all terrains of all ecosystems. Their capability to survive on a wide diversity of the host plants, circumvent host plant defence is a few of several of their secrets making them most successful of all known parasites. Among various groups of plant-parasitic nematodes, endo-parasitic nematodes are the most damaging one and also difficult to control. Meloidogyne sps. are commonly known as root-knot nematodes. Our inability to control them is primarily due to our poor understanding of the biology of these plant parasites. Due to the availability of the complete genome sequence of few Meloidogyne species, biotechnological interventions are used to unravel the secrets of their success. Chemical controls of these nematodes are extensively reported in the literature. Due to the environmental toxicity associated with these chemicals, and restrictions on the use of chemicals against nematodes led to screening and development of eco-friendly management strategies. The present study was conducted to screen nematotoxic properties of Neem (Azadirachta indica), Jatropha (Jatropha curcas), Kachnar (Bauhinia variegate), Bel (Aegle marmelos) and Eucalyptus (Eucalyptus globules) leaf extracts against root-knot nematode Meloidogyne javanica in vitro. The aqueous extracts were used against the hatching of the nematode eggs, movement of second stage juveniles (J2) and the viability of the J2 in increasing concentration of the bioactive compound. The eggs were treated with various concentrations of the selected extracts for different time periods ranging from 24h to 6 days. A significant inhibition of egg hatching and increase in the mortality of the nematode juvenile in few of the aqueous extracts were recorded. Reduced egg hatching and increased mortality of the nematode juveniles could be maybe the indicators of the presence of anti-nematode potential in the selected plant leaves. The results from the study can pave the way for the development of eco-friendly management strategies for plant-parasitic nematodes.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
EL HASSAN MAYAD ◽  
KHADIJA BASAID ◽  
JAMES NICHOLAS FURZE ◽  
NIAMA HEIMEUR ◽  
BTISSAM SENHAJI ◽  
...  

Meloidogyne javanica is considered as the most damaging nematode of vegetables in Morocco. Eco-friendly bionematicides are urgently required for its control. In vitro experiments were carried out to assess the direct effect of bioproducts of Peganum harmala against M. javanica. The bioassay showed extracts to be nematotoxic. Aqueous extracts of P. harmala exhibited reversible nematostatic activity. The estimated ID50 of the most active product in methanolic extracts was 368ppm. HPLC-MS of the methanolic extract revealed that total content of major alkaloids of P. harmala was approximately 12.162±0.637mg/g. Harmine (8.514±0.521mg/g) is the dominant alkaloid. In conclusion, Peganum harmala has a reversible nematostatic activity on second stage juveniles of M. javanica. The effect of P. harmala is due to its possession of a high content of β-carboline alkaloids, which warrant further experimentation. Bioproducts from P. harmala should be exploited through formulations for management of the root knot nematode.


1999 ◽  
Vol 2 (4) ◽  
pp. 1364-1365 ◽  
Author(s):  
Husan- Bano ◽  
Imran Ali Siddiq ◽  
Waseemud-din Ahmed ◽  
Syed Ehteshamul

2012 ◽  
Vol 63 (1) ◽  
pp. 197-203 ◽  
Author(s):  
Zainab M. Ahmed ◽  
Shahnaz Dawar ◽  
Marium Tariq ◽  
Muhammad J. Zaki

Seeds of local trees, such <i>Azadirachta indica</i> A. Juss, <i>Adenanthera pavonina</i> L., <i>Leucaena leucocephala</i> (Lam.) de Wit and <i>Eucalyptus</i> spp., were used as aqueous extract at 25, 50 and 100 % concentration to control the activity of <i>Meloidogyne javanica</i> (Treub) Citwood. All seed extracts showed lethal effect on <i>M. javanica</i> eggs, and a gradual decrease in egg hatching and an increase in mortality of second-stage juveniles were observed with the increase in extract concentration. <i>L. leucocephala</i> was found to be most effective in reducing egg hatching, whereas 100 % mortality of juveniles was observed in the case of <i>A. indica</i> seed extract. Number of knots was significantly reduced at 100 % concentration when seeds of chick pea and mung bean were treated and soil was drenched with <i>A. pavonina</i> and <i>Eucalyptus</i> spp. seed extract.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Mahsa Rostami ◽  
Akbar Karegar ◽  
S. Mohsen Taghavi

Abstract Background Root-knot nematodes (Meloidogyne spp.) are the most destructive agricultural pests, which parasitize thousands of different plant species in the world. Using antagonistic bacteria can be a potential alternative to hazardous chemical nematicides. This study was conducted to evaluate the biocontrol activities of the bacteria isolated from vermicompost and earthworm against M. javanica in infected tomato plants. Results Seventeen bacteria were isolated from vermicompost and earthworm. Their antagonistic effects were tested against the root-knot nematode M. javanica in laboratory and in glasshouse experiments. In the preliminary screening test, 8 bacterial isolates significantly caused more than 50% decrease in reproduction factor (Rf) of the nematode on tomato plants. Six isolates with more than 60% reduction in the nematode Rf were selected and identified as follows: Lysinibacillus fusiformis C1, Bacillus megaterium C3, B. safensis VW3, Pseudomonas resinovorans VW4, Lysinibacillus sp. VW6, and Sphingobacterium daejeonense LV1 by 16S rRNA gene sequencing. The isolates B. megaterium C3, B. safensis VW3, P. resinovorans VW4, and L. fusiformis C1 inhibited the nematode egg hatching by 20–28%, and Lysinibacillus sp. VW6 and L. fusiformis C1 caused 15 and 20% mortality of the second-stage juveniles in vitro. In a glasshouse, the 6 bacterial isolates reduced the nematode Rf by 47–66%, and P. resinovorans VW4 was the most effective isolate. However, B. safensis VW3, B. megaterium C3, and L. fusiformis C1 had the best effect on plant growth. Conclusions Most of the bacteria isolated from earthworm or vermicompost had nematicidal properties. This study provided empirical evidence of the nematicidal potential of isolates Lysinibacillus fusiformis C1, Pseudomonas resinovorans VW4, and Sphingobacterium daejeonense LV1 and the antagonistic activities of Bacillus megaterium C3 and B. safensis VW3 against Meloidogyne javanica.


Author(s):  
Paula Juliana Grotto Débia ◽  
Beatriz Cervejeira Bolanho ◽  
Claudia Regina Dias-Arieira

Abstract Background The root-knot nematode Meloidogyne javanica can infect beetroots, causing extensive damage to this food crop. As chemical and genetic control tactics have shown limited efficacy, new strategies are needed to improve the integrated management of this parasite. This study assessed the influence of potential defence elicitors and M. javanica infection on the mineral composition of beetroot. Plants were treated with acibenzolar-S-methyl (ASM), citrus biomass, or a mannanoligosaccharide-based product (MOS) and inoculated with 1000 eggs and second-stage juveniles of M. javanica. At 60 days after inoculation, beetroot plants were harvested and evaluated for nematode population density, vegetative growth, and mineral content. Results All potential elicitors reduced nematode population density in beetroots (p ≤ 0.10) and improved the vegetative parameters of inoculated plants (p ≤ 0.05), except shoot fresh weight. Some minerals were found to be negatively affected by treatments, particularly calcium, whose levels were consistently lower in treated plants. On the other hand, M. javanica inoculation increased magnesium, iron, manganese, zinc, and copper contents in beetroots. However, the latter mineral (Cu content) of inoculated plants was positively influenced by MOS and ASM. Conclusion Potential elicitor treatments did not improve the mineral composition of beetroot, but were effective in reducing nematode population density. Plants inoculated with M. javanica had higher mineral levels. However, gall formation decreases the commercial value of the crop and might render it unsuitable for commercialisation. M. javanica-infected beetroots may be used for nutrient extraction or sold to food processing industries.


Sign in / Sign up

Export Citation Format

Share Document