scholarly journals Biocontrol potential of bacterial isolates from vermicompost and earthworm against the root-knot nematode Meloidogyne javanica infecting tomato plants

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Mahsa Rostami ◽  
Akbar Karegar ◽  
S. Mohsen Taghavi

Abstract Background Root-knot nematodes (Meloidogyne spp.) are the most destructive agricultural pests, which parasitize thousands of different plant species in the world. Using antagonistic bacteria can be a potential alternative to hazardous chemical nematicides. This study was conducted to evaluate the biocontrol activities of the bacteria isolated from vermicompost and earthworm against M. javanica in infected tomato plants. Results Seventeen bacteria were isolated from vermicompost and earthworm. Their antagonistic effects were tested against the root-knot nematode M. javanica in laboratory and in glasshouse experiments. In the preliminary screening test, 8 bacterial isolates significantly caused more than 50% decrease in reproduction factor (Rf) of the nematode on tomato plants. Six isolates with more than 60% reduction in the nematode Rf were selected and identified as follows: Lysinibacillus fusiformis C1, Bacillus megaterium C3, B. safensis VW3, Pseudomonas resinovorans VW4, Lysinibacillus sp. VW6, and Sphingobacterium daejeonense LV1 by 16S rRNA gene sequencing. The isolates B. megaterium C3, B. safensis VW3, P. resinovorans VW4, and L. fusiformis C1 inhibited the nematode egg hatching by 20–28%, and Lysinibacillus sp. VW6 and L. fusiformis C1 caused 15 and 20% mortality of the second-stage juveniles in vitro. In a glasshouse, the 6 bacterial isolates reduced the nematode Rf by 47–66%, and P. resinovorans VW4 was the most effective isolate. However, B. safensis VW3, B. megaterium C3, and L. fusiformis C1 had the best effect on plant growth. Conclusions Most of the bacteria isolated from earthworm or vermicompost had nematicidal properties. This study provided empirical evidence of the nematicidal potential of isolates Lysinibacillus fusiformis C1, Pseudomonas resinovorans VW4, and Sphingobacterium daejeonense LV1 and the antagonistic activities of Bacillus megaterium C3 and B. safensis VW3 against Meloidogyne javanica.

Nematology ◽  
2001 ◽  
Vol 3 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Yuji Oka

AbstractNematicidal activity of eight essential oil components; trans -anethole, anis alcohol, p-anisaldehyde, benzaldehyde, 4-methoxyphenol, trans-cinnamaldehyde, (R)-(+)-pulegone, 2-furaldehyde, and a non-essential oil component anisole, was tested against the root-knot nematode Meloidogyne javanica in solutions in 200-ml and 3-l pots and in microplots. Among the anisole derivatives, p-anisaldehyde showed the highest nematicidal activity in solutions and in soil. However, trans-cinnamaldehyde, 2-furaldehyde and benzaldehyde showed higher nematicidal activity than p-anisaldehyde in the 3-l pot experiments. EC50 values of trans-cinnamaldehyde for juvenile immobilisation and hatching inhibition in vitro were as low as 15 and 11.3 μl/l, respectively. In the 3-l pot experiments, trans-cinnamaldehyde, 2-furaldehyde, benzaldehyde and carvacrol at a concentration of 100 mg/kg greatly reduced the root galling of tomato, whereas trans-anethole was not effective. In a microplot experiment, soil treatment with trans-cinnamaldehyde (50 ml/m2) reduced the galling index and increased the shoot weight of tomato plants. Although further experiments, such as development of formulations and application methods, are needed, some essential oil components, especially aldehydes, can be developed into lowtoxicity nematicides.


2015 ◽  
Vol 33 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Josilda CA Damasceno ◽  
Ana CF Soares ◽  
Fábio N Jesus ◽  
Rosane S Sant'Ana

The effect of sisal liquid residue (fresh and fermented) was evaluated in controlling the root-knot nematode (Meloidogyne javanica) in tomato plants. Bioassays were conducted in vitro with 100 µL of an aqueous suspension containing 300 juveniles (J2) of M. javanica and 1000 µL of sisal liquid residue. The treatments consisted of nematode immersion for 24 and 48 hours in sisal liquid residue, fresh or fermented, diluted in water to the final concentrations of 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5 and 20%, and nematicide Carbofuran at 350 mg of the active ingredient per liter. Under greenhouse conditions, 4000 juveniles of M. javanica were inoculated on tomato plants grown in pots, and after one week, 100 mL of sisal liquid residue at concentrations of 0, 4, 8, 12, 16 and 20%, were added to soil around the tomato plants. Control treatments received either 100 mL of distilled water or 0.5 g of Carbofuran per pot. Forty days after inoculation, plants were harvested and evaluated for plant growth and root damage. In addition, the selective effect of sisal liquid residue on growth of beneficial soil microorganisms was evaluated. All concentrations of sisal liquid residue presented nematicidal effect, after 48 h of nematode exposure. A mortality rate of 100% was obtained for M. javanica juveniles exposed to liquid residue at a concentration of 20%. Application of increasing concentrations of both sisal liquid residues reduced the number of galls and egg masses per plant and per gram of roots, as well as the final population of M. javanica in soil. Growth of beneficial soil microorganisms was observed in soil amended with sisal fresh liquid residue, for all concentrations tested. The fermented residue caused inhibition of soil beneficial microorganisms. Future studies should be conducted to test the nematicidal effect on tomato plants under field conditions.


Author(s):  
Abdul Munif ◽  
Supramana ◽  
Elis Nina Herliyana ◽  
Ankardiansyah Pandu Pradana

Yield loss due to root-knot nematode Meloidogyne incognita infection is reported to reach 35%, depends on factors contributing to infection. Application of several endophytic bacterial isolates (bacterial consortium) to control pathogenic infection is reported to be more effective compared to the application of single bacterial isolate. This study was aimed to obtain endophytic bacterial consortium originated from forestry plant that is effective to control root-knot nematode. The study was conducted through bacterial isolation followed by biosafety test. Bacterial isolates that were found to be safe for plants and mammals and compatible with each other were further grouped as the endophytic bacterial consortium. Phenotypic characterization and physiological characteristics including Gram type, ability to produce protease, chitinase, and lipase enzymes as well as HCN volatile compound were also tested. Moreover, the ability to fix nitrogen and dissolve phosphate were also examined. The endophytic bacterial consortium consisted of several bacterial isolates was further tested for its ability to inhibit M. incognita egg hatching and increase J2 of M. incognita mortality in vitro. Furthermore, test on tomato plants infested with 500 J2 of M. incognita was also performed in the greenhouse. Test results showed that 70 bacterial isolates were successfully isolated from Shorea sp., Swietenia sp., Albizia falcataria, Anthocephalus cadamba, and Juglans nigra. However, 34 bacterial isolates were observed to be safe (did not cause hypersensitivity reaction and did not produce hemolytic toxin). According to physiological characteristics, it was found that 25 isolates were able to produce protease enzyme, 26 isolates were able to produce chitinase enzyme, and 14 isolates were able to produce lipase enzyme. Moreover, it was also detected that 11 isolates were able to produce HCN volatile compound, 23 isolates were able to fix nitrogen (N), and 24 isolates were able to dissolve phosphate (P). Endophytic bacterial consortium obtained in this study was also observed to be able to inhibit M. incognita egg hatching up to 81.33% and increase J2 of M. incognita mortality up to 85% compared to control. In addition, the application of endophytic bacterial consortium was also able to increase the growth of tomato plant infected with M. incognita, and suppress the severity of the root-knot disease. This study provided information that endophytic bacterial consortium originated from forestry plants has the potential as a biocontrol agent of M. incognita.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
I Gede Swibawa I Gede ◽  
YUYUN FITRIANA ◽  
SOLIKHIN ◽  
RADIX SUHARJO ◽  
F.X. SUSILO ◽  
...  

Abstract. Swibawa IG, Fitriana Y, Solikhin, Suharjo R, Susilo FX, Rani E, Haryani MS, Wardana RA. 2020. Morpho-molecular identification and pathogenicity test on fungal parasites of guava root-knot nematode eggs in Lampung, Indonesia. Biodiversitas 21: 1108-1115. This study aimed to obtain and discover the identity of the species of fungal egg parasites of root-knot nematodes (RKN), which have a high pathogenic ability causing major losses in vegetable crops. The exploration of the fungi was carried out in 2016 and 2018 from Crystal guava plantations in East Lampung, Central Lampung, Tanggamus, and NirAma, a commercial product that has been used for controlling Meloidogyne sp. in Indonesia. Identification was carried out based on morphological characteristics and molecular-based gene sequential analysis of Intergenic Transcribed Spacer (ITS) 1 and ITS 4. A pathogenicity test was carried out in vitro and in a greenhouse using tomato plants as indicator plants. In the in vitro test, observations were made on the percentage of infected RKN eggs. The observations in the greenhouse test were carried out on RKN populations in the soil and roots of tomato plants, root damage (root knots), and damage intensity due to RKN infection. The exploration resulted in five isolates of fungal egg parasites of RKN from the guava plantations in East Lampung (2), Central Lampung (1), Tanggamus (1), and from the isolation results of commercial products (1). The isolates were given codes as B4120X (PT GGP PG1), B3010 (PT GGP PG4), B412G (PT GGP PG 4), B01TG (Tanggamus), and BioP (Commercial products). Based on their morphological characteristics, the isolates were classified into the genus of Paecilomyces. The results of molecular identification showed that the discovered fungi were Purpureocillium lilacinum (Thom.) Luangsa Ard. (Syn. Paecilomyces lilacinus (Thom.) Samson.). Based on the in vitro tests, the five fungal isolates were able to parasitize RKN eggs at 86.4-100%. In the greenhouse test, all isolates significantly suppressed nematode populations in the soil and tomato roots, inhibited the formation of root knots, and produced lower damage intensity compared to controls. Among all the isolates tested, B01TG had the best ability to infect nematode eggs (99.5%), suppressing the formation of root knots, nematode population in the soil and the roots of tomato plants, and the damage intensity compared to other isolates.


Nematology ◽  
2002 ◽  
Vol 4 (8) ◽  
pp. 891-898 ◽  
Author(s):  
Yuji Oka ◽  
Uri Yermiyahu

AbstractSuppressive effects of two composts, from cattle manure and grape marc, on the root-knot nematode Meloidogyne javanica were tested in pot and in vitro experiments. No root galls were found on tomato roots grown in soils containing 10 or 25% (v/v) cattle manure compost, and very few on those grown in 50% grape marc compost. Significant reductions in galling index were also found on tomato plants grown in soils containing lower concentrations of this compost. Chemical analysis of the composts and leachates from the soils showed that the cattle manure compost had higher electrical conductivity (EC) and higher concentrations of nitrogen, especially N–NH4, than the grape marc compost. Water extract of the cattle manure compost showed high nematicidal activity to the nematode juveniles and less activity toward the eggs in vitro. Water extract of the grape marc compost showed weaker nematicidal activity to the juveniles and eggs. Washing composted soils with excess water before nematode inoculation and tomato planting led to better plant growth, but the nematode-suppressive effect was decreased. These results suggest that high nitrogen concentrations, especially N–NH4, and high EC values contribute to the nematode suppressiveness of the composts.


2001 ◽  
Vol 91 (7) ◽  
pp. 687-693 ◽  
Author(s):  
E. Sharon ◽  
M. Bar-Eyal ◽  
I. Chet ◽  
A. Herrera-Estrella ◽  
O. Kleifeld ◽  
...  

The fungal biocontrol agent, Trichoderma harzianum, was evaluated for its potential to control the root-knot nematode Meloidogyne javanica. In greenhouse experiments, root galling was reduced and top fresh weight increased in nematode-infected tomatoes following soil pretreatment with Trichoderma peat-bran preparations. The use of a proteinase Prb1-transformed line (P-2) that contains multiple copies of this gene improved biocontrol activity in the greenhouse experiments compared with the nontransformed wild-type strain (WT). All the Trichoderma strains showed the ability to colonize M. javanica-separated eggs and second-stage juveniles (J2) in sterile in vitro assays, whereas P-2 also penetrated the egg masses. This protease-transformed line presented the same nematicidal and overall proteolytic activity as the WT in in vitro tests in which concentrated soil extracts from Trichoderma-treated soils immobilized the infective J2. However, the J2 immobilization and proteolytic activities of both P-2 and the WT were higher than those obtained with strain T-203. Characterization of the activity of all Trichoderma strains soil extracts on J2 showed that it was heat resistant and restricted to the low-molecular-weight fraction (less than 3 kDa). It is suggested that improved proteolytic activity of the antagonist may be important for the biological control of the nematodes.


2019 ◽  
Vol 12 (1) ◽  
pp. 24-37
Author(s):  
M.A. Radwan ◽  
A.S.A. Saad ◽  
H.A. Mesbah ◽  
H.S. Ibrahim ◽  
M.S. Khalil

Summary Avermectins and spinosyns are structurally related natural products of microbial origin and belong to a new family of macrolides which are active against a vast array of invertebrate pests. In the present study, the effects of four members of macrolides; abamectin (ABM), emamectin benzoate (EMB), spinosad (SPI) and spinetoram (SPIT), on Meloidogyne incognita were investigated under in vitro and in vivo conditions. All compounds reduced egg hatching and led to high mortality of the nematode second-stage juveniles (J2). ABM showed the maximum rate of egg hatching inhibition and J2 mortality while SPIT recorded the minimum. All treatments reduced the number of galls, egg masses, eggs/egg mass in roots and J2 in the soil when compared to the control. Based on the 10 folds of the 24 h-LC50 values of J2 mortality in vitro, EMB and ABM exhibited higher percent reduction in galls (79.68 and 71.45%), egg masses (75.19 and 70.54%), eggs/egg mass (60.49 and 40.91%) and J2 in the soil (90.31 and 86.54%), respectively, compared to SPI and SPIT. Significant increase in tomato shoot height occurred in all biopesticides (10 folds) and SPIT (20 folds). SPI at 10 folds of the 24 h-LC50 values of J2 mortality in vitro, significantly increased root length while ABM at 50 folds and SPIT at 20 folds decreased root length by 5.15% and 5.88%, respectively, compared to the untreated inoculated plants. In all treatments, the dry shoot and root weights increased, compared to the untreated control. Our findings suggest that these macrolides have the ability to regulate nematode population densities and may be an alternative to classical nematicides.


2021 ◽  
Vol 108 (Special) ◽  
Author(s):  
Ganeshan k ◽  
◽  
Vetrivelkalai p ◽  
Bhagawati B ◽  
Nibha G ◽  
...  

A field survey was conducted in 12 districts of Assam viz., Jorhat, Golaghat, Nagaon, Marigaon, Goalpara, Dibrugarh, Tinsukia, Lakhimpur, Dhemaji, Sivsagar, Kamrup and Barpeta. A total of 92 root samples were collected and 37 bacterial isolates were isolated from commercial banana cultivars. The culture filtrates extracted from 37 endophytic bacterial isolates, were screened against southern root-knot nematode, Meloidogyne incognita in vitro and under pot culture studies. The five bacterial isolates viz., EB4, EB8, BC1, BC11 and BC12 showed 100% inhibition of egg hatching and juvenile mortality of M. incognita with an exposure period of 48 and 72h. On seed bacterization, with these five promising isolates, two isolates viz.EB4, BC1 significantly enhanced germination percentage (33.33, 25.31%) and vigour index (75.5, 64.39%) of paddy, receptively. The potential bacterial isolates viz., BC1 and EB4 were identified as Lysinibacillus sp. and Pseudomonas sp., respectively , based on the morphological phenotypic and biochemical characterization. The pot culture experiment revealed that the bacterial endophytes viz., Lysinibacillus sp. (BC1) Pseudomonas sp. (EB4) significantly reduced the soil (61.64, 56.71%) and root nematode population (77.29, 68.87%), number of adult females (73.97, 69.89%), egg masses (85.63, 80.11%) and root-knot index (1.33, 1.67) of M. incognita compared to untreated control. The bacterial endophytes viz., Pseudomonas sp. (EB4), Lysinibacillus sp. (BC1) were also significantly increased the growth parameters viz., shoot length (43.33, 39.18%), and root length (78.24, 59.26%) and pesudostem girth (58.38, 52.13%).


Sign in / Sign up

Export Citation Format

Share Document