scholarly journals Triacontanol Foliar Spray Alleviated Drought Stress Effects by Maintaining Photosynthesis and Cellular Redox Balance in Sunflower Seedlings

2021 ◽  
Vol 12 (2) ◽  
pp. 103-118
Author(s):  
Hebatollah Ismail ◽  
Abeer Younis
Author(s):  
Ben Hu ◽  
Heng Yao ◽  
Xiaojun Peng ◽  
Ran Wang ◽  
Feng Li ◽  
...  

Flavonoids are major secondary metabolites in plants, which play important roles in maintaining the cellular redox balance in cells. Chalcone synthase (CHS) is the key enzyme in the flavonoids biosynthesis pathway, and has been proved to monitor the changes to drought stress tolerance. In this work, we overexpressed a CHS gene in tobacco (Nicotiana tabacum). The transgenic tobacco plants were more tolerant than the control plants to drought stress. The transcription levels of the key genes involved in the flavonoids pathway and the contents of seven flavonoids were also significantly raised in the transgenic tobacco plants. In addition, overexpression of the CHS gene lead to a lower concentration of the oxidative stress product malondialdehyde. Overall, the NtCHS gene studied in this work was considered as a candidate gene for genetic engineering to enhance drought tolerance of plants and improve response to oxidative stress.


2021 ◽  
Vol 22 (15) ◽  
pp. 7872
Author(s):  
Malin Tordis Meyer ◽  
Christoph Watermann ◽  
Thomas Dreyer ◽  
Steffen Wagner ◽  
Claus Wittekindt ◽  
...  

Salivary gland cancers are rare but aggressive tumors that have poor prognosis and lack effective cure. Of those, parotid tumors constitute the majority. Functioning as metabolic machinery contributing to cellular redox balance, peroxisomes have emerged as crucial players in tumorigenesis. Studies on murine and human cells have examined the role of peroxisomes in carcinogenesis with conflicting results. These studies either examined the consequences of altered peroxisomal proliferators or compared their expression in healthy and neoplastic tissues. None, however, examined such differences exclusively in human parotid tissue or extended comparison to peroxisomal proteins and their associated gene expressions. Therefore, we examined differences in peroxisomal dynamics in parotid tumors of different morphologies. Using immunofluorescence and quantitative PCR, we compared the expression levels of key peroxisomal enzymes and proliferators in healthy and neoplastic parotid tissue samples. Three parotid tumor subtypes were examined: pleomorphic adenoma, mucoepidermoid carcinoma and acinic cell carcinoma. We observed higher expression of peroxisomal matrix proteins in neoplastic samples with exceptional down regulation of certain enzymes; however, the degree of expression varied between tumor subtypes. Our findings confirm previous experimental results on other organ tissues and suggest peroxisomes as possible therapeutic targets or markers in all or certain subtypes of parotid neoplasms.


2016 ◽  
Vol 47 (6) ◽  
pp. 743-752 ◽  
Author(s):  
R. Keshavarz Afshar ◽  
M. Hashemi ◽  
M. DaCosta ◽  
J. Spargo ◽  
A. Sadeghpour

2020 ◽  
Vol 11 (8) ◽  
Author(s):  
Xingyou Wan ◽  
Chao Wang ◽  
Zhenyu Huang ◽  
Dejian Zhou ◽  
Sheng Xiang ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259585
Author(s):  
Gull Mehak ◽  
Nudrat Aisha Akram ◽  
Muhammad Ashraf ◽  
Prashant Kaushik ◽  
Mohamed A. El-Sheikh ◽  
...  

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khoi Thieu Ho ◽  
Kohei Homma ◽  
Jun Takanari ◽  
Hanako Bai ◽  
Manabu Kawahara ◽  
...  

AbstractHeat shock (HS) protein 70 (HSP70), a well-known HS-induced protein, acts as an intracellular chaperone to protect cells against stress conditions. Although HS induces HSP70 expression to confer stress resistance to cells, HS causes cell toxicity by increasing reactive oxygen species (ROS) levels. Recently, a standardized extract of Asparagus officinalis stem (EAS), produced from the byproduct of asparagus, has been shown to induce HSP70 expression without HS and regulate cellular redox balance in pheochromocytoma cells. However, the effects of EAS on reproductive cell function remain unknown. Here, we investigated the effect of EAS on HSP70 induction and oxidative redox balance in cultured bovine cumulus-granulosa (CG) cells. EAS significantly increased HSP70 expression; however, no effect was observed on HSP27 and HSP90 under non-HS conditions. EAS decreased ROS generation and DNA damage and increased glutathione (GSH) synthesis under both non-HS and HS conditions. Moreover, EAS synergistically increased HSP70 and HSF1 expression and increased progesterone levels in CG cells. Treatment with an HSP70 inhibitor significantly decreased GSH level, increased ROS level, and decreased HSF1, Nrf2, and Keap1 expression in the presence of EAS. Furthermore, EAS significantly increased progesterone synthesis. Thus, EAS improves HSP70-mediated redox balance and cell function in bovine CG cells.


Sign in / Sign up

Export Citation Format

Share Document